1
|
D’Astolfo P, Vilhena J, Rothenbühler S, Drechsel C, Gutiérrez-Varela O, Häner R, Decurtins S, Liu SX, Prampolini G, Pawlak R, Meyer E. On-Surface Synthesis and Cryogenic Exfoliation of Sterically Frustrated Atropisomers. ACS NANO 2025; 19:13805-13816. [PMID: 40168186 PMCID: PMC12005049 DOI: 10.1021/acsnano.4c16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
On-surface synthesis provides exceptional control over nanostructure and material composition, enabling the creation of molecular compounds that are difficult or impossible to obtain with other synthesis methods. In this work, we demonstrate the possibility of synthesizing atropisomeric molecules made of chains of polyaromatic hydrocarbon units via on-surface synthesis. Scanning probe microscopy reveals that molecules adsorbed on Au(111) surfaces adopt a planar structure, with adjacent monomeric units aligning either in parallel or antiparallel configurations, influencing the alignment of the molecule on the surface. Cryo-force spectroscopy peeling experiments show that metastable conformers can be mechanically stabilized during the lifting-redeposition process of the polymer from the surface. In this process, periodic drops in frequency shift are observed, corresponding to monomer detachment-readsorption. Interestingly, this periodicity is independent of the parallel/antiparallel configuration but is counterintuitively smaller than the monomer size. Molecular dynamics simulations relate this effective reduction in unit length to a tethering effect between the chain and the surface. This, in turn, allowed us to test and validate Silva's analytical phenomenological power law model for peeling. Our findings not only provide a method for studying the elusive class 1 atropisomeric molecules but also offer deeper insight into the peeling phenomenon at the nanoscale.
Collapse
Affiliation(s)
- Philipp D’Astolfo
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - J.G. Vilhena
- CSIC, Instituto
de Ciencia de Materiales de Madrid (ICMM), 28049 Madrid, Spain
| | - Simon Rothenbühler
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, CH 3012 Bern, Switzerland
| | - Carl Drechsel
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | | | - Robert Häner
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, CH 3012 Bern, Switzerland
| | - Silvio Decurtins
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, CH 3012 Bern, Switzerland
| | - Shi-Xia Liu
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, CH 3012 Bern, Switzerland
| | - Giacomo Prampolini
- CNR−Consiglio
Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo
Metallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Rémy Pawlak
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Ernst Meyer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Lin C, Li J, Li G, Luo W, Liu S, Hammud A, Xia Y, Pan A, Wolf M, Müller M, Kumagai T. Quantitative comparison of local field enhancement from tip-apex and plasmonic nanofocusing excitation via plasmon-assisted field emission resonances. NANOSCALE 2025; 17:7164-7172. [PMID: 39995343 DOI: 10.1039/d4nr04262j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Plasmonic nanofocusing via off-site excitation offers a promising approach to minimize background light scattering and enhance excitation efficiency in tip-enhanced optical spectroscopy. However, a comprehensive understanding of its effectiveness compared to direct tip-apex excitation remains limited. Here we introduce plasmon-assisted field emission resonances as a practicable approach for quantitative evaluation of the local field enhancement in a scanning-tunneling-microscope junction via off-site excitation compared to direct tip-apex excitation. By using single-groove pyramidal tips suitable for multi-wavelength excitations, we find that the near-field intensity is approximately 3.8 and 1.7 times higher for off-site excitation than for direct apex excitation at excitation wavelengths of 780 nm and 633 nm, respectively. These results are further supported by numerical electromagnetic field simulations. Our findings demonstrate the effective implementation of plasmonic nanofocusing in low-temperature scanning tunneling microscopy, paving the way for more precise and background-free tip-enhanced optical spectroscopy at the atomic scale.
Collapse
Affiliation(s)
- Chenfang Lin
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Jie Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Guoao Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Wenjie Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Shuyi Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Adnan Hammud
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yang Xia
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
- School of Physics and Electronics, Hunan Normal University, 410081, Changsha, China
| | - Martin Wolf
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Melanie Müller
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Takashi Kumagai
- Institute for Molecular Science, 38 NishigoNaka, Myodaiji, Okazaki 444-8585, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
3
|
Mateos D, Jover O, Varea M, Lauwaet K, Granados D, Miranda R, Fernandez-Dominguez AI, Martin-Jimenez A, Otero R. Directional picoantenna behavior of tunnel junctions formed by an atomic-scale surface defect. SCIENCE ADVANCES 2024; 10:eadn2295. [PMID: 39321296 PMCID: PMC11423879 DOI: 10.1126/sciadv.adn2295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Plasmonic nanoantennas have attracted much attention lately, among other reasons because of the directionality of light emitted by fluorophores coupled to their localized surface plasmon resonances. Plasmonic picocavities, i.e., cavities with mode volumes below 1 nm3, could act as enhanced antennas due to their extreme field confinement, but the directionality on their emission is difficult to control. In this work, we show that the plasmonic picocavity formed between the tip of a scanning tunneling microscope and a metal surface with a monoatomic step shows directional emission profiles and, thus, can be considered as a realization of a picoantenna. Electromagnetic calculations demonstrate that the observed directionality arises from the reshaping and tilting of the surface charges induced at the scanning tip due to the atomic step. Our results pave the way to exploiting picoantennas as an efficient way for the far-field probing and control of light-matter interactions below the nanoscale.
Collapse
Affiliation(s)
- David Mateos
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Oscar Jover
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Varea
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Rodolfo Miranda
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio I Fernandez-Dominguez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Roberto Otero
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Cirera B, Liu S, Park Y, Hamada I, Wolf M, Shiotari A, Kumagai T. Single-molecule tip-enhanced Raman spectroscopy of C 60 on the Si(111)-(7 × 7) surface. Phys Chem Chem Phys 2024; 26:21325-21331. [PMID: 39082139 DOI: 10.1039/d4cp01803f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Tip-enhanced Raman spectroscopy (TERS), combined with low-temperature scanning tunnelling microscopy (STM), has emerged as a highly sensitive method for chemical characterization, offering even sub-molecular resolution. However, its exceptional sensitivity is generally limited to molecules adsorbed onto plasmonic surfaces. Here we demonstrate single-molecule TERS for fullerene (C60) adsorbed on the Si(111)-(7 × 7) reconstructed surface. Distinct adsorption geometries of C60 are manifested in the TERS spectra. In addition, we reveal that formation of a molecular-point-contact (MPC) drastically enhances Raman scattering and leads to the emergence of additional vibrational peaks, including overtones and combinations. In the MPC regime, the anti-Stokes peaks are observed, revealing that vibrationally excited states are populated through optical excitation of the MPC junction, whereas showing no significant vibrational heating by current flow via inelastic electron-vibration scattering. Our results will open up the possibility of applying TERS for semiconducting surfaces and studying microscopic mechanisms of vibrational heating in metal-molecule-semiconductor nanojunctions.
Collapse
Affiliation(s)
- Borja Cirera
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, Berlin 14195, Germany.
- Instituto de Ciencia de Materiales de Madrid (CSIC), Campus de Excelencia de la Universidad Autónoma de Madrid, c/Sor Juana Inés de la Cruz 3, 28049, Spain
| | - Shuyi Liu
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, Berlin 14195, Germany.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Youngwook Park
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, Berlin 14195, Germany.
| | - Ikutaro Hamada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Martin Wolf
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, Berlin 14195, Germany.
| | - Akitoshi Shiotari
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, Berlin 14195, Germany.
| | - Takashi Kumagai
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, Berlin 14195, Germany.
- Center for Mesoscopic Sciences, Institute for Molecular Science, Okazaki 444-8585, Japan
| |
Collapse
|
5
|
Amirtharaj S, Xie Z, Si Yu See J, Rolleri G, Malchow K, Chen W, Bouhelier A, Lörtscher E, Galland C. Light Emission and Conductance Fluctuations in Electrically Driven and Plasmonically Enhanced Molecular Junctions. ACS PHOTONICS 2024; 11:2388-2396. [PMID: 38911841 PMCID: PMC11191743 DOI: 10.1021/acsphotonics.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Electrically connected and plasmonically enhanced molecular junctions combine the optical functionalities of high field confinement and enhancement (cavity function), and of high radiative efficiency (antenna function) with the electrical functionalities of molecular transport. Such combined optical and electrical probes have proven useful for the fundamental understanding of metal-molecule contacts and contribute to the development of nanoscale optoelectronic devices including ultrafast electronics and nanosensors. Here, we employ a self-assembled metal-molecule-metal junction with a nanoparticle bridge to investigate correlated fluctuations in conductance and tunneling-induced light emission at room temperature. Despite the presence of hundreds of molecules in the junction, the electrical conductance and light emission are both highly sensitive to atomic-scale fluctuations-a phenomenology reminiscent of picocavities observed in Raman scattering and of luminescence blinking from photoexcited plasmonic junctions. Discrete steps in conductance associated with fluctuating emission intensities through the multiple plasmonic modes of the junction are consistent with a finite number of randomly localized, point-like sources dominating the optoelectronic response. Contrasting with these microscopic fluctuations, the overall plasmonic and electronic functionalities of our devices feature long-term survival at room temperature and under an electrical bias of a few volts, allowing for measurements over several months.
Collapse
Affiliation(s)
- Sakthi
Priya Amirtharaj
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Zhiyuan Xie
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Josephine Si Yu See
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Rolleri
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Konstantin Malchow
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wen Chen
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alexandre Bouhelier
- Laboratoire
Interdisciplinaire Carnot de Bourgogne CNRS UMR 6303, Université de Bourgogne, 21000 Dijon, France
| | - Emanuel Lörtscher
- IBM
Research Europe—Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Christophe Galland
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
de Campos Ferreira R, Sagwal A, Doležal J, Canola S, Merino P, Neuman T, Švec M. Resonant Tip-Enhanced Raman Spectroscopy of a Single-Molecule Kondo System. ACS NANO 2024; 18:13164-13170. [PMID: 38711331 PMCID: PMC11112976 DOI: 10.1021/acsnano.4c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecting spin states in open-shell molecular configurations is yet unexplored. Here, we use the tip of a scanning probe microscope to lift a perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecule from a metal surface to bring it into an open-shell spin one-half anionic state. We reveal a correlation between the appearance of a Kondo resonance in differential conductance spectroscopy and concurrent characteristic changes captured by the TERS measurements. Through a detailed investigation of various adsorbed and tip-contacted PTCDA scenarios, we infer that the Raman scattering on suspended PTCDA is resonant with a higher excited state. Theoretical simulation of the vibrational spectra enables a precise assignment of the individual TERS peaks to high-symmetry Ag modes, including the fingerprints of the observed spin state. These findings highlight the potential of TERS in capturing complex interactions between charge, spin, and photophysical properties in nanoscale molecular systems and suggest a pathway for designing single-molecule spin-optical devices.
Collapse
Affiliation(s)
| | - Amandeep Sagwal
- Institute
of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
- Faculty
of Mathematics and Physics, Charles University; Ke Karlovu 3, Praha 2 CZ12116. Czech Republic
| | - Jiří Doležal
- Institute
of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
- Institute
of Physics, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Sofia Canola
- Institute
of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
| | - Pablo Merino
- Instituto
de Ciencia de Materiales de Madrid; CSIC, Sor Juana Inés de la Cruz 3, Madrid E28049, Spain
| | - Tomáš Neuman
- Institute
of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
| | - Martin Švec
- Institute
of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences; Flemingovo náměstí 542/2. Praha 6 CZ16000, Czech Republic
| |
Collapse
|
7
|
Nishida J, Otomo A, Koitaya T, Shiotari A, Minato T, Iino R, Kumagai T. Sub-Tip-Radius Near-Field Interactions in Nano-FTIR Vibrational Spectroscopy on Single Proteins. NANO LETTERS 2024; 24:836-843. [PMID: 38193723 DOI: 10.1021/acs.nanolett.3c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Tip-enhanced vibrational spectroscopy has advanced to routinely attain nanoscale spatial resolution, with tip-enhanced Raman spectroscopy even achieving atomic-scale and submolecular sensitivity. Tip-enhanced infrared spectroscopy techniques, such as nano-FTIR and AFM-IR spectroscopy, have also enabled the nanoscale chemical analysis of molecular monolayers, inorganic nanoparticles, and protein complexes. However, fundamental limits of infrared nanospectroscopy in terms of spatial resolution and sensitivity have remained elusive, calling for a quantitative understanding of the near-field interactions in infrared nanocavities. Here, we demonstrate the application of nano-FTIR spectroscopy to probe the amide-I vibration of a single protein consisting of ∼500 amino acid residues. Detection with higher tip tapping demodulation harmonics up to the seventh order leads to pronounced enhancement in the peak amplitude of the vibrational resonance, originating from sub-tip-radius geometrical effects beyond dipole approximations. This quantitative characterization of single-nanometer near-field interactions opens the path toward employing infrared vibrational spectroscopy at the subnanoscale and single-molecule levels.
Collapse
Affiliation(s)
- Jun Nishida
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Takanori Koitaya
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Akitoshi Shiotari
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Taketoshi Minato
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Takashi Kumagai
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
8
|
Cui J, Zhang Y, Dong ZC. Atomistic polarization model for Raman scattering simulations of large metal tips with atomic-scale protrusions at the tip apex. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4031-4042. [PMID: 39635638 PMCID: PMC11501578 DOI: 10.1515/nanoph-2023-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2024]
Abstract
Tip-enhanced Raman spectroscopy (TERS) has recently been developed to push the spatial resolution down to single-chemical-bond scale. The morphology of the scanning tip, especially the atomistic protrusion at the tip apex, plays an essential role in obtaining both high spatial resolution and large field enhancement at the Ångström level. Although it is very difficult to directly characterize the atomistic structures of the tip, the Raman scattering from the apex's own vibrations of the metal tip can provide valuable information about the stacking of atoms at the tip apex. However, conventional quantum chemistry packages can only simulate the Raman scattering of small metal clusters with few atoms due to huge computational cost, which is not enough since the shaft of the tip behind the apex also makes significant contributions to the polarizabilities of the whole tip. Here we propose an atomistic polarization model to simulate the Raman spectra of large metal tips at subwavelength scales based on the combination of the atomistic discrete dipole approximation model and the density functional theory. The atomistic tip with different sizes and stacking structures is considered in its entirety during the calculation of polarizabilities, and only the vibrational contributions from the tip apex are taken into account to simulate the Raman spectra of the tip. The Raman spectral features are found to be very sensitive to the local constituent element at the tip apex, atomic stacking modes, and shape of the tip apex, which can thus be used as a fingerprint to identify different atomistic structures of the tip apex. Moreover, our approaches can be extended to the metal tips with sub-wavelength sizes, making it possible to consider both the large scale and the atomistic detail of the tip simultaneously. The method presented here can be used as a basic tool to simulate the Raman scattering process of the metal tips and other nanostructures in an economic way, which is beneficial for understanding the roles of atomistic structures in tip- and surface-enhanced spectroscopies.
Collapse
Affiliation(s)
- Jie Cui
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei230026, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei230088, China
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei230088, China
| |
Collapse
|