1
|
Luo Y, Sheng S, Schirato A, Martin-Jimenez A, Della Valle G, Cerullo G, Kern K, Garg M. Visualizing hot carrier dynamics by nonlinear optical spectroscopy at the atomic length scale. Nat Commun 2025; 16:4999. [PMID: 40442216 PMCID: PMC12122852 DOI: 10.1038/s41467-025-60384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
Probing and manipulating the spatiotemporal dynamics of hot carriers in nanoscale metals is crucial to a plethora of applications ranging from nonlinear nanophotonics to single-molecule photochemistry. The direct investigation of these highly non-equilibrium carriers requires the experimental capability of high energy-resolution (~ meV) broadband femtosecond spectroscopy. When considering the ultimate limits of atomic-scale structures, this capability has remained out of reach until date. Using a two-color femtosecond pump-probe spectroscopy, we present here the real-time tracking of hot carrier dynamics in a well-defined plasmonic picocavity, formed in the tunnel junction of a scanning tunneling microscope (STM). The excitation of hot carriers in the picocavity enables ultrafast all-optical control over the broadband (~ eV) anti-Stokes electronic resonance Raman scattering (ERRS) and the four-wave mixing (FWM) signals generated at the atomic length scale. By mapping the ERRS and FWM signals from a single graphene nanoribbon (GNR), we demonstrate that both signals are more efficiently generated along the edges of the GNR - a manifestation of atomic-scale nonlinear optical microscopy.
Collapse
Affiliation(s)
- Yang Luo
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Shaoxiang Sheng
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Andrea Schirato
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- Department of Physics and Astronomy, Rice University, Texas, USA
| | - Alberto Martin-Jimenez
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Giuseppe Della Valle
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy.
- Istituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Milano, Italy.
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- Istituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Manish Garg
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
| |
Collapse
|
2
|
Loirette-Pelous A, Greffet JJ. Theory of Photoluminescence by Metallic Structures. ACS NANO 2024; 18:31823-31833. [PMID: 39523550 DOI: 10.1021/acsnano.4c07637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Light emission by metals at room temperature is quenched by fast relaxation processes. Nevertheless, Mooradian reported in 1969 the observation of photoluminescence by metals pumped by a laser. While this phenomenon is currently at the heart of many promising applications, it is still poorly understood. In this work, we report a theory which reproduces quantitatively previously published experimental data of photoluminescence by metallic nanoparticles. We first provide a general formula that relates the emitted power for a frequency, direction and polarization state to a sum over all transitions involving matrix elements, electronic distribution of all bands and Green's tensors. We then consider the case of intraband recombination and derive a closed-form expression of the emitted power depending only on macroscopic quantities. This formula, which is a generalization of Kirchhoff's law, answers many of the open questions related to intraband photoluminescence.
Collapse
Affiliation(s)
- Aurelian Loirette-Pelous
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Jean-Jacques Greffet
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| |
Collapse
|
3
|
Khurgin JB, Kinsey N. "Nonperturbative Nonlinearities": Perhaps Less than Meets the Eye. ACS PHOTONICS 2024; 11:2874-2887. [PMID: 39184190 PMCID: PMC11342419 DOI: 10.1021/acsphotonics.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024]
Abstract
We address challenges in characterizing changes in permittivity and refractive index beyond standard perturbative methods with special attention given to transparent conductive oxides (TCOs). We unveil a realistic limit to permittivity changes under high optical power densities. Our study covers both slow and ultrafast nonlinearities, demonstrating that all nonlinearities induce refractive index changes accurately described by a simple curve with saturation electric field (or irradiance) and maximum change of permittivity at saturation. Our model, grounded in material properties, like oscillator strength and characteristic times, offers a robust framework for understanding and predicting nonlinear optical phenomena in TCOs and other materials. We differentiate between the significance of higher-order nonlinear susceptibilities in ultrafast and slow nonlinear scenarios. We aim to provide valuable insights for researchers exploring strong light-matter interaction.
Collapse
Affiliation(s)
- Jacob B. Khurgin
- Department
of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nathaniel Kinsey
- Department
of Electrical & Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
4
|
Lee A, Wu S, Yim JE, Zhao B, Sheldon MT. Hot Electrons in a Steady State: Interband vs Intraband Excitation of Plasmonic Gold. ACS NANO 2024; 18:19077-19085. [PMID: 38996185 PMCID: PMC11271177 DOI: 10.1021/acsnano.4c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Understanding the dynamics of "hot", highly energetic electrons resulting from nonradiative plasmon decay is crucial for optimizing applications in photocatalysis and energy conversion. This study presents an analysis of electron kinetics within plasmonic metals, focusing on the steady-state behavior during continuous-wave (CW) illumination. Using an inelastic spectroscopy technique, we quantify the temperature and lifetimes of distinct carrier populations during excitation. A significant finding is the monotonic increase in hot electron lifetime with decreases in electronic temperature. We also observe a 1.22× increase in hot electron temperature during intraband excitation compared to interband excitation and a corresponding 2.34× increase in carrier lifetime. The shorter lifetimes during interband excitation are hypothesized to result from direct recombination of nonthermal holes and hot electrons, highlighting steady-state kinetics. Our results help bridge the knowledge gap between ultrafast and steady-state spectroscopies, offering critical insights for optimizing plasmonic applications.
Collapse
Affiliation(s)
- Annika Lee
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shengxiang Wu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ju Eun Yim
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Boqin Zhao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew T. Sheldon
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
5
|
Sharma DK, Agreda A, Dell'Ova F, Malchow K, Colas des Francs G, Dujardin E, Bouhelier A. Memristive Control of Plasmon-Mediated Nonlinear Photoluminescence in Au Nanowires. ACS NANO 2024; 18:15905-15914. [PMID: 38829860 DOI: 10.1021/acsnano.4c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nonlinear photoluminescence (N-PL) is a broadband photon emission arising from a nonequilibrium heated electron distribution generated at the surface of metallic nanostructures by ultrafast pulsed laser illumination. N-PL is sensitive to surface morphology, local electromagnetic field strength, and electronic band structure, making it relevant to probe optically excited nanoscale plasmonic systems. It also has been key to accessing the complex multiscale time dynamics ruling electron thermalization. Here, we show that plasmon-mediated N-PL emitted by a gold nanowire can be modified by an electrical architecture featuring a nanogap. Upon voltage activation, we observe that N-PL becomes dependent on the electrical transport dynamics and can thus be locally modulated. This finding brings an electrical leverage to externally control the photoluminescence generated from metal nanostructures and constitutes an asset for the development of emerging nanoscale interface devices managing photons and electrons.
Collapse
Affiliation(s)
- Deepak K Sharma
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21000 Dijon, France
| | - Adrian Agreda
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21000 Dijon, France
| | - Florian Dell'Ova
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21000 Dijon, France
| | - Konstantin Malchow
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21000 Dijon, France
| | - Gérard Colas des Francs
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21000 Dijon, France
| | - Erik Dujardin
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21000 Dijon, France
| | - Alexandre Bouhelier
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21000 Dijon, France
| |
Collapse
|
6
|
Lemasters R, Manjare M, Freeman R, Wang F, Pierce LG, Hua G, Urazhdin S, Harutyunyan H. Non-thermal emission in gap-mode plasmon photoluminescence. Nat Commun 2024; 15:4468. [PMID: 38796475 PMCID: PMC11127923 DOI: 10.1038/s41467-024-48928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
Photoluminescence from spatially inhomogeneous plasmonic nanostructures exhibits fascinating wavelength-dependent nonlinear behaviors due to the intraband recombination of hot electrons excited into the conduction band of the metal. The properties of the excited carrier distribution and the role of localized plasmonic modes are subjects of debate. In this work, we use plasmonic gap-mode resonators with precise nanometer-scale confinement to show that the nonlinear photoluminescence behavior can become dominated by non-thermal contributions produced by the excited carrier population that strongly deviates from the Fermi-Dirac distribution due to the confinement-induced large-momentum free carrier absorption beyond the dipole approximation. These findings open new pathways for controllable light conversion using nonequilibrium electron states at the nanoscale.
Collapse
Affiliation(s)
- Robert Lemasters
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
| | - Manoj Manjare
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Ryan Freeman
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Feng Wang
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Luka Guy Pierce
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Gordon Hua
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Sergei Urazhdin
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Hayk Harutyunyan
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Bowman AR, Rodríguez Echarri A, Kiani F, Iyikanat F, Tsoulos TV, Cox JD, Sundararaman R, García de Abajo FJ, Tagliabue G. Quantum-mechanical effects in photoluminescence from thin crystalline gold films. LIGHT, SCIENCE & APPLICATIONS 2024; 13:91. [PMID: 38637531 PMCID: PMC11026419 DOI: 10.1038/s41377-024-01408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 04/20/2024]
Abstract
Luminescence constitutes a unique source of insight into hot carrier processes in metals, including those in plasmonic nanostructures used for sensing and energy applications. However, being weak in nature, metal luminescence remains poorly understood, its microscopic origin strongly debated, and its potential for unraveling nanoscale carrier dynamics largely unexploited. Here, we reveal quantum-mechanical effects in the luminescence emanating from thin monocrystalline gold flakes. Specifically, we present experimental evidence, supported by first-principles simulations, to demonstrate its photoluminescence origin (i.e., radiative emission from electron/hole recombination) when exciting in the interband regime. Our model allows us to identify changes to the measured gold luminescence due to quantum-mechanical effects as the gold film thickness is reduced. Excitingly, such effects are observable in the luminescence signal from flakes up to 40 nm in thickness, associated with the out-of-plane discreteness of the electronic band structure near the Fermi level. We qualitatively reproduce the observations with first-principles modeling, thus establishing a unified description of luminescence in gold monocrystalline flakes and enabling its widespread application as a probe of carrier dynamics and light-matter interactions in this material. Our study paves the way for future explorations of hot carriers and charge-transfer dynamics in a multitude of material systems.
Collapse
Affiliation(s)
- Alan R Bowman
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alvaro Rodríguez Echarri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- MBI-Max-Born-Institut, Berlin, Germany
| | - Fatemeh Kiani
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fadil Iyikanat
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Ted V Tsoulos
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Joel D Cox
- POLIMA-Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense M, Denmark
| | - Ravishankar Sundararaman
- Department of Materials Science & Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Giulia Tagliabue
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|