1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Huang H, Xiao L, Fang L, Lei M, Liu Z, Gao S, Lei Q, Lei J, Wei R, Lei Y, Xue L, Geng Z, Cai L, Yan F. Static Topographical Cue Combined with Dynamic Fluid Stimulation Enhances the Macrophage Extracellular Vesicle Yield and Therapeutic Potential for Bone Defects. ACS NANO 2025; 19:8667-8691. [PMID: 39998493 DOI: 10.1021/acsnano.4c15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Extracellular vesicles (EVs) hold promise for tissue regeneration, but their low yield and limited therapeutic efficacy hinder clinical translation. Bioreactors provide a larger culture surface area and stable environment for large-scale EV production, yet their ability to enhance EV therapeutic efficacy is limited. Physical stimulation, by inducing cell differentiation and modulating EV cargo composition, offers a more efficient, cost-effective, and reproducible approach compared to the cargo loading of EVs and biochemical priming of parental cells. Herein, the effects of a 3D-printed perfusion bioreactor with a topographical cue on the macrophage EV yield and bioactivity were assessed. The results indicate that the bioreactor increased the EV yield 12.5-fold and enhanced bioactivity in promoting osteogenic differentiation and angiogenesis via upregulated miR-210-3p. Mechanistically, fluid shear stress activates Piezo1, triggering Ca2+ influx and Yes-associated protein (YAP) nuclear translocation, promoting EV secretion and enhancing macrophage M2 polarization in conjunction with morphological changes guided by aligned topography. Moreover, a porous electrospun membrane-hydrogel composite scaffold loaded with bioreactor-derived EVs exhibited outstanding efficacy in promoting osteogenic differentiation and angiogenesis in a rat cranial defect model. This study presents a scalable, cost-effective, and stable platform for the production of therapeutic EVs, potentially overcoming key challenges in translating EV-based therapies to the clinic.
Collapse
Affiliation(s)
- Huayi Huang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Lucheng Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Ming Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Zhibo Liu
- Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009 Zhejiang, China
| | - Shijie Gao
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Qingjian Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Jun Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Renxiong Wei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Yifeng Lei
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, Hubei, China
| | - Longjian Xue
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, Hubei, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China
| |
Collapse
|
3
|
Wang Y, Yung P, Lu G, Liu Y, Ding C, Mao C, Li ZA, Tuan RS. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology-Biology Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401334. [PMID: 38491868 PMCID: PMC11733728 DOI: 10.1002/adma.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Yuwei Liu
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- The First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037P. R. China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Zhong Alan Li
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Key Laboratory of Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhen518172P. R. China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| |
Collapse
|
4
|
Yousefi F, Foster LA, Selim OA, Zhao C. Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability. Bioengineering (Basel) 2024; 11:1245. [PMID: 39768063 PMCID: PMC11673930 DOI: 10.3390/bioengineering11121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for skeletal muscle regeneration, influenced by a complex interplay of mechanical, biochemical, and molecular cues. Properties of the extracellular matrix (ECM) such as stiffness and alignment guide stem cell fate through mechanosensitive pathways, where forces like shear stress translate into biochemical signals, affecting cell behavior. Aging introduces senescence which disrupts the MuSC niche, leading to reduced regenerative capacity via epigenetic alterations and metabolic shifts. Transplantation further challenges MuSC viability, often resulting in fibrosis driven by dysregulated fibro-adipogenic progenitors (FAPs). Addressing these issues, scaffold designs integrated with pharmacotherapy emulate ECM environments, providing cues that enhance graft functionality and endurance. These scaffolds facilitate the synergy between mechanotransduction and intracellular signaling, optimizing MuSC proliferation and differentiation. Innovations utilizing human pluripotent stem cell-derived myogenic progenitors and exosome-mediated delivery exploit bioactive properties for targeted repair. Additionally, 3D-printed and electrospun scaffolds with adjustable biomechanical traits tackle scalability in treating volumetric muscle loss. Advanced techniques like single-cell RNA sequencing and high-resolution imaging unravel muscle repair mechanisms, offering precise mapping of cellular interactions. Collectively, this interdisciplinary approach fortifies tissue graft durability and MuSC maintenance, propelling therapeutic strategies for muscle injuries and degenerative diseases.
Collapse
Affiliation(s)
- Farbod Yousefi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| | - Lauren Ann Foster
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
- Atlanta Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Omar A. Selim
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| |
Collapse
|
5
|
Gurriaran-Rodriguez U, De Repentigny Y, Kothary R, Rudnicki MA. Isolation of small extracellular vesicles from regenerating muscle tissue using tangential flow filtration and size exclusion chromatography. Skelet Muscle 2024; 14:22. [PMID: 39394606 PMCID: PMC11468478 DOI: 10.1186/s13395-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- CIC bioGUNE, Bizkaia Technology Park, Derio, 48160, Spain.
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
6
|
Jacho D, Yildirim-Ayan E. Mechanome-Guided Strategies in Regenerative Rehabilitation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 29:100516. [PMID: 38586151 PMCID: PMC10993906 DOI: 10.1016/j.cobme.2023.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Regenerative Rehabilitation represents a multifaceted approach that merges mechanobiology with therapeutic intervention to harness the body's intrinsic tissue repair and regeneration capacity. This review delves into the intricate interplay between mechanical loading and cellular responses in the context of musculoskeletal tissue healing. It emphasizes the importance of understanding the phases involved in translating mechanical forces into biochemical responses at the cellular level. The review paper also covers the mechanosensitivity of macrophages, fibroblasts, and mesenchymal stem cells, which play a crucial role during regenerative rehabilitation since these cells exhibit unique mechanoresponsiveness during different stages of the tissue healing process. Understanding how mechanical loading amplitude and frequency applied during regenerative rehabilitation influences macrophage polarization, fibroblast-to-myofibroblast transition (FMT), and mesenchymal stem cell differentiation is crucial for developing effective therapies for musculoskeletal tissues. In conclusion, this review underscores the significance of mechanome-guided strategies in regenerative rehabilitation. By exploring the mechanosensitivity of different cell types and their responses to mechanical loading, this field offers promising avenues for accelerating tissue healing and functional recovery, ultimately enhancing the quality of life for individuals with musculoskeletal injuries and degenerative diseases.
Collapse
Affiliation(s)
- Diego Jacho
- Department of Bioengineering, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, USA
| |
Collapse
|
7
|
Gurriaran-Rodriguez U, Rudnicki MA. Isolation of small extracellular vesicles from regenerating muscle tissue using Tangential Flow Filtration and Size Exclusion Chromatography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580358. [PMID: 38405765 PMCID: PMC10888854 DOI: 10.1101/2024.02.14.580358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.
Collapse
|