1
|
Yang Z, Li C, Liu X, Zhao S, Qu M, Sun S, Zhang Z, Yang Z, Chen X. Copper(II) Complex of a Urea‐functionalized Pyridyl Ligand: Synthesis, Crystal Structure, and Acetate Binding Properties. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Zaiwen Yang
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology 710054 Xi'an Shaanxi P. R. China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Natural Resources 710021 Xi'an Shaanxi P. R. China
| | - Chun Li
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology 710054 Xi'an Shaanxi P. R. China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology 710054 Xi'an Shaanxi P. R. China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Natural Resources 710021 Xi'an Shaanxi P. R. China
| | - Shunsheng Zhao
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology 710054 Xi'an Shaanxi P. R. China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Natural Resources 710021 Xi'an Shaanxi P. R. China
| | - Mengnan Qu
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology 710054 Xi'an Shaanxi P. R. China
| | - Shasha Sun
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology 710054 Xi'an Shaanxi P. R. China
| | - Zhen Zhang
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology 710054 Xi'an Shaanxi P. R. China
| | - Zheng Yang
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology 710054 Xi'an Shaanxi P. R. China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Natural Resources 710021 Xi'an Shaanxi P. R. China
| | - Xinjuan Chen
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Natural Resources 710021 Xi'an Shaanxi P. R. China
| |
Collapse
|
2
|
Zaheer MA, Poppitz D, Feyzullayeva K, Wenzel M, Matysik J, Ljupkovic R, Zarubica A, Karavaev AA, Pöppl A, Gläser R, Dvoyashkin M. Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2039-2061. [PMID: 31728253 PMCID: PMC6839565 DOI: 10.3762/bjnano.10.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
In this contribution, the preparation of hierarchically structured ETS-10-based catalysts exhibiting notably higher activity in the conversion of triolein with methanol compared to microporous titanosilicate is presented. Triolein, together with its unsaturated analog trilinolein, represent the most prevalent triglycerides in oils. The introduction of mesopores by post-synthetic treatment with hydrogen peroxide and a subsequent calcination step results in the generation of an additional active surface with Brønsted basic sites becoming accessible for triolein and enhancing the rate of transesterification. The resulting catalyst exhibits a comparable triolein conversion (≈73%) after 4 h of reaction to CaO (≈76%), which is reportedly known to be highly active in the transesterification of triglycerides. In addition, while CaO showed a maximum conversion of 83% after 24 h, the ETS-10-based catalyst reached 100% after 8 h, revealing its higher stability compared to CaO. The following characteristics of the catalysts were experimentally addressed - crystal structure (X-ray diffraction, transmission electron microscopy), crystal shape and size (scanning electron microscopy, laser diffraction), textural properties (N2 sorption, Hg porosimetry), presence of hydroxyl groups and active sites (temperature-programmed desorption of NH3 and CO2, 29Si magic angle spinning nuclear magnetic resonance (NMR)), mesopore accessibility and diffusion coefficient of adsorbed triolein (pulsed field gradient NMR), pore interconnectivity (variable temperature and exchange spectroscopy experiments using hyperpolarized 129Xe NMR) and oxidation state of Ti atoms (electron paramagnetic resonance). The obtained results enabled the detailed understanding of the impact of the post-synthetic treatment applied to the ETS-10 titanosilicate with respect to the catalytic activity in the heterogeneously catalyzed transesterification of triglycerides.
Collapse
Affiliation(s)
- Muhammad A Zaheer
- Institute of Chemical Technology, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - David Poppitz
- Institute of Chemical Technology, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Khavar Feyzullayeva
- Institute of Chemical Technology, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Marianne Wenzel
- Institute of Analytical Chemistry, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Radomir Ljupkovic
- Faculty of Science and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia
| | - Aleksandra Zarubica
- Faculty of Science and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia
| | - Alexander A Karavaev
- Gubkin Russian State University of Oil and Gas, Leninsky Prospekt 65, 119991 Moscow, Russia
| | - Andreas Pöppl
- Felix-Bloch-Institut, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Roger Gläser
- Institute of Chemical Technology, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Muslim Dvoyashkin
- Institute of Chemical Technology, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Wang L, Lin Q, Zhang Y, Liu Y, Yasin A, Zhang L. Design and synthesis of supramolecular functional monomers bearing urea and norbornene motifs. RSC Adv 2019; 9:20058-20064. [PMID: 35514692 PMCID: PMC9065584 DOI: 10.1039/c9ra01852b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Three sets of functional monomers namely urea-based, 2-ureido-4[1H]-primidone (UPy)-based and norbornene based functional monomers were designed and synthesized. These functional monomers (FM) were obtained in decent yields using amine and isocyanate/norbornene as starting materials. Methacrylate and styrene isocyanate with 1,4-diaminobutane/tris(2-aminoethyl)amine were chosen for the synthesis of symmetrical, asymmetrical and three-branched urea-functional monomers, respectively. UPy-based FMs were synthesized with isocyanate and 2-amino-4-hydroxy-6-methylpyrimidine. The synthesis of these monomers feature short reaction times, mild reaction conditions and no need for column chromatographic purification. Furthermore, the norbornene based FM was used for preparing molecularly imprinted polymers (MIPs) by Ring-Opening Metathesis Polymerization (ROMP). Results showed that these synthetic routes represent a convenient and useful approach for synthesis of novel functional monomers.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering Urumqi 830023 China +86-991-3838957 +86-18129307169.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Qifeng Lin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences Urumqi Xinjiang 830011 China
| | - Yagang Zhang
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering Urumqi 830023 China +86-991-3838957 +86-18129307169.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanxia Liu
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering Urumqi 830023 China +86-991-3838957 +86-18129307169.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China
| |
Collapse
|
4
|
Sindt AJ, Smith MD, Berens S, Vasenkov S, Bowers CR, Shimizu LS. Single-crystal-to-single-crystal guest exchange in columnar assembled brominated triphenylamine bis-urea macrocycles. Chem Commun (Camb) 2019; 55:5619-5622. [PMID: 31025663 DOI: 10.1039/c9cc01725a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Crystals of brominated triphenylamine bis-urea macrocycles are robust materials which can undergo single-crystal-to-single-crystal guest exchange inside 1-dimensional columns.
Collapse
Affiliation(s)
- Ammon J. Sindt
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Mark D. Smith
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Samuel Berens
- Department of Chemical Engineering
- University of Florida
- Gainesville
- USA
| | - Sergey Vasenkov
- Department of Chemical Engineering
- University of Florida
- Gainesville
- USA
| | | | - Linda S. Shimizu
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
5
|
Zhao M, Wu W, Su B. pH-Controlled Drug Release by Diffusion through Silica Nanochannel Membranes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33986-33992. [PMID: 30211527 DOI: 10.1021/acsami.8b12200] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report in this work the fabrication of a flow-through silica nanochannel membrane (SNM) for controlled drug release applications. The ultrathin SNM consists of parallel nanochannels with a uniform diameter of ∼2.3 nm and a density of 4 × 1012 cm-2, which provide simultaneously high permeability and size selectivity toward small molecules. The track-etched porous polyethylene terephthalate film premodified with silane on its surface was used to support the ultrathin SNM via irreversible covalent bond formation, thus offering mechanical strength, flexibility, and stability to the ultrathin SNM for continuous and long-term use. Alkylamines were subsequently grafted onto the SNM surface to modulate the "on" and "off" state of nanochannels by medium pH for controlled drug release. Thiamphenicol glycinate hydrochloride (TPG), an intestinal drug, was studied as a model to permeate through an ultrathin SNM in both simulated gastric fluid (pH = 1.2) and simulated intestinal fluid (pH = 7.5). The release in the latter case was 178 times faster than that in the former. Moreover, a nearly zero-order constant release of TPG via single-file diffusion was achieved up to 24 h, demonstrating the feasibility of sustained and continuous release of small-molecule drugs in a pH-controlled manner.
Collapse
Affiliation(s)
- Meijiao Zhao
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , China
| | - Wanhao Wu
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
6
|
Telkki VV. Hyperpolarized Laplace NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:619-632. [PMID: 29441608 DOI: 10.1002/mrc.4722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Laplace nuclear magnetic resonance (NMR), dealing with NMR relaxation and diffusion experiments, reveals details of molecular motion and provides chemical resolution complementary to NMR spectra. Laplace NMR has witnessed a great progress in past decades due to the development of methodology and signal processing, and it has lots of extremely interesting applications in various fields, including chemistry, biochemistry, geology, archaeology, and medicine. The aim of this minireview is to give a pedagogically oriented overview of Laplace NMR. It does not provide a full literature review of the field, but, instead, it elucidate the benefits and features of Laplace NMR methods through few selected examples. The minireview describes also recent progress in multidimensional Laplace NMR and Laplace inversion methods. Furthermore, the potential of modern hyperpolarization methods as well as ultrafast approach to increase the sensitivity and time-efficiency of the Laplace NMR experiments is highlighted.
Collapse
|
7
|
Komulainen S, Roukala J, Zhivonitko VV, Javed MA, Chen L, Holden D, Hasell T, Cooper A, Lantto P, Telkki VV. Inside information on xenon adsorption in porous organic cages by NMR. Chem Sci 2017; 8:5721-5727. [PMID: 28989612 PMCID: PMC5621166 DOI: 10.1039/c7sc01990d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/14/2017] [Indexed: 11/21/2022] Open
Abstract
A solid porous molecular crystal formed from an organic cage, CC3, has unprecedented performance for the separation of rare gases. Here, xenon was used as an internal reporter providing extraordinarily versatile information about the gas adsorption phenomena in the cage and window cavities of the material. 129Xe NMR measurements combined with state-of-the-art quantum chemical calculations allowed the determination of the occupancies of the cavities, binding constants, thermodynamic parameters as well as the exchange rates of Xe between the cavities. Chemical exchange saturation transfer (CEST) experiments revealed a minor window cavity site with a significantly lower exchange rate than other sites. Diffusion measurements showed significantly reduced mobility of xenon with loading. 129Xe spectra also revealed that the cage cavity sites are preferred at lower loading levels, due to more favourable binding, whereas window sites come to dominate closer to saturation because of their greater prevalence.
Collapse
Affiliation(s)
- Sanna Komulainen
- NMR Research Unit , University of Oulu , P.O.Box 3000 , 90014 Oulu , Finland .
| | - Juho Roukala
- NMR Research Unit , University of Oulu , P.O.Box 3000 , 90014 Oulu , Finland .
| | - Vladimir V Zhivonitko
- Laboratory of Magnetic Resonance Microimaging , International Tomography Center SB RAS , Department of Natural Sciences , Novosibirsk State University , Instututskaya St. 3A, Pirogova St. 2 , 630090 Novosibirsk , Russia
| | | | - Linjiang Chen
- Department of Chemistry , Centre for Materials Discovery , University of Liverpool , Crown Street , Liverpool L69 7ZD , UK
| | - Daniel Holden
- Department of Chemistry , Centre for Materials Discovery , University of Liverpool , Crown Street , Liverpool L69 7ZD , UK
| | - Tom Hasell
- Department of Chemistry , Centre for Materials Discovery , University of Liverpool , Crown Street , Liverpool L69 7ZD , UK
| | - Andrew Cooper
- Department of Chemistry , Centre for Materials Discovery , University of Liverpool , Crown Street , Liverpool L69 7ZD , UK
| | - Perttu Lantto
- NMR Research Unit , University of Oulu , P.O.Box 3000 , 90014 Oulu , Finland .
| | - Ville-Veikko Telkki
- NMR Research Unit , University of Oulu , P.O.Box 3000 , 90014 Oulu , Finland .
| |
Collapse
|
8
|
Chen Z, Sahli BJ, MacLachlan MJ. Self-Assembly of Extended Head-to-Tail Triangular Pt3 Macrocycles into Nanotubes. Inorg Chem 2017; 56:5383-5391. [DOI: 10.1021/acs.inorgchem.7b00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhengyu Chen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian J. Sahli
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mark J. MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
9
|
Ahola S, Mankinen O, Telkki VV. Ultrafast NMR diffusion measurements exploiting chirp spin echoes. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:341-347. [PMID: 27726201 DOI: 10.1002/mrc.4540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Standard diffusion NMR measurements require the repetition of the experiment multiple times with varying gradient strength or diffusion delay. This makes the experiment time-consuming and restricts the use of hyperpolarized substances to boost sensitivity. We propose a novel single-scan diffusion experiment, which is based on spatial encoding of two-dimensional data, employing the spin-echoes created by two successive adiabatic frequency-swept chirp π pulses. The experiment is called ultrafast pulsed-field-gradient spin-echo (UF-PGSE). We present a rigorous derivation of the echo amplitude in the UF-PGSE experiment, justifying the theoretical basis of the method. The theory reveals also that the standard analysis of experimental data leads to a diffusion coefficient value overestimated by a few per cent. Although the overestimation is of the order of experimental error and thus insignificant in many practical applications, we propose that it can be compensated by a bipolar gradient version of the experiment, UF-BP-PGSE, or by corresponding stimulated-echo experiment, UF-BP-pulsed-field-gradient stimulated-echo. The latter also removes the effect of uniform background gradients. The experiments offer significant prospects for monitoring fast processes in real time as well as for increasing the sensitivity of experiments by several orders of magnitude by nuclear spin hyperpolarization. Furthermore, they can be applied as basic blocks in various ultrafast multidimensional Laplace NMR experiments. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Susanna Ahola
- NMR Research Unit, University of Oulu, POBox 3000, FIN-90014, Oulu, Finland
| | - Otto Mankinen
- NMR Research Unit, University of Oulu, POBox 3000, FIN-90014, Oulu, Finland
| | | |
Collapse
|
10
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
11
|
Mustafa SFZ, Maarof H, Ahmed R, Abdallah HH. Diffusional behavior and guest conformational analysis of hexadecane-1,16-diol and hexadecane in urea crystal model via molecular dynamics simulation approach. J Mol Model 2016; 22:290. [PMID: 27866329 DOI: 10.1007/s00894-016-3152-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 10/13/2016] [Indexed: 11/24/2022]
Abstract
Diffusion at the atomic or molecular level is a source of many physical, chemical, and biological processes taking place in plentiful materials. This work is an endeavor toward investigating the diffusional behavior of two different type of guests, hexadecane-1,16-diol and hexadecane enclathration in urea tunnel architecture, whereby the correlation of the diffusion mechanism with the guest's structural and conformational properties is explored. To carry out this study, molecular dynamics simulation approach is adopted. It is found that hexadecane-1,16-diol exhibit slower diffusion with an average diffusion coefficient value [Formula: see text], where hexadecane diffuse more rapidly with an average diffusion coefficient value [Formula: see text]. It is also observed that the structural properties influence the guest's travel distance and torsion angle distribution of the trans and gauche conformational proportion. Furthermore, the observed high energy barrier accounted for hexadecane-1,16-diol and low energy barrier for hexadecane along urea tunnel systems was analyzed. The comparison of our obtained results are in close agreement with the available experimental measurements, i.e., gauche proportion properties between two different guest molecules correlate well with Raman spectroscopy investigation on α,ω-dihalogenoalkane/urea inclusion compounds. Our calculations also successfully endorse the structure-property relation between the two systems.
Collapse
Affiliation(s)
- Siti Fatimah Zaharah Mustafa
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
| | - Hasmerya Maarof
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia.
| | - Rashid Ahmed
- Department of Physics, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor, Malaysia
| | | |
Collapse
|
12
|
Salpage SR, Donevant LS, Smith MD, Bick A, Shimizu LS. Modulating the reactivity of chromone and its derivatives through encapsulation in a self-assembled phenylethynylene bis-urea host. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|