1
|
Quartin E, Rosa S, Gonzalez-Anton S, Mosteo Lopez L, Francisco V, Duarte D, Lo Celso C, Pires das Neves R, Ferreira L. Nanoparticle-encapsulated retinoic acid for the modulation of bone marrow hematopoietic stem cell niche. Bioact Mater 2024; 34:311-325. [PMID: 38274293 PMCID: PMC10809008 DOI: 10.1016/j.bioactmat.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
More effective approaches are needed in the treatment of blood cancers, in particular acute myeloid leukemia (AML), that are able to eliminate resistant leukemia stem cells (LSCs) at the bone marrow (BM), after a chemotherapy session, and then enhance hematopoietic stem cell (HSC) engraftment for the re-establishment of the HSC compartment. Here, we investigate whether light-activatable nanoparticles (NPs) encapsulating all-trans-retinoic acid (RA+NPs) could solve both problems. Our in vitro results show that mouse AML cells transfected with RA+NPs differentiate towards antitumoral M1 macrophages through RIG.1 and OASL gene expression. Our in vivo results further show that mouse AML cells transfected with RA+NPs home at the BM after transplantation in an AML mouse model. The photo-disassembly of the NPs within the grafted cells by a blue laser enables their differentiation towards a macrophage lineage. This macrophage activation seems to have systemic anti-leukemic effect within the BM, with a significant reduction of leukemic cells in all BM compartments, of animals treated with RA+NPs, when compared with animals treated with empty NPs. In a separate group of experiments, we show for the first time that normal HSCs transfected with RA+NPs show superior engraftment at the BM niche than cells without treatment or treated with empty NPs. This is the first time that the activity of RA is tested in terms of long-term hematopoietic reconstitution after transplant using an in situ activation approach without any exogenous priming or genetic conditioning of the transplanted cells. Overall, the approach documented here has the potential to improve consolidation therapy in AML since it allows a dual intervention in the BM niche: to tackle resistant leukemia and improve HSC engraftment at the same time.
Collapse
Affiliation(s)
- Emanuel Quartin
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Susana Rosa
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Sara Gonzalez-Anton
- Department of Life Sciences, Imperial College London, South Kensington Campus, The Francis Crick Institute, London, UK
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Laura Mosteo Lopez
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Department of Onco-Hematology, Instituto Português de Oncologia (IPO)-Porto, Porto, Portugal
| | - Vitor Francisco
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Delfim Duarte
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Department of Onco-Hematology, Instituto Português de Oncologia (IPO)-Porto, Porto, Portugal
| | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, South Kensington Campus, The Francis Crick Institute, London, UK
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Ricardo Pires das Neves
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Lino Ferreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-517, Coimbra, Portugal
| |
Collapse
|
2
|
Kim M, Panagiotakopoulou M, Chen C, Ruiz SB, Ganesh K, Tammela T, Heller DA. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nat Rev Cancer 2023; 23:581-599. [PMID: 37353679 PMCID: PMC10528361 DOI: 10.1038/s41568-023-00593-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/25/2023]
Abstract
The interactions among tumour cells, the tumour microenvironment (TME) and non-tumour tissues are of interest to many cancer researchers. Micro-engineering approaches and nanotechnologies are under extensive exploration for modelling these interactions and measuring them in situ and in vivo to investigate therapeutic vulnerabilities in cancer and extend a systemic view of tumour ecosystems. Here we highlight the greatest opportunities for improving the understanding of tumour ecosystems using microfluidic devices, bioprinting or organ-on-a-chip approaches. We also discuss the potential of nanosensors that can transmit information from within the TME or elsewhere in the body to address scientific and clinical questions about changes in chemical gradients, enzymatic activities, metabolic and immune profiles of the TME and circulating analytes. This Review aims to connect the cancer biology and engineering communities, presenting biomedical technologies that may expand the methodologies of the former, while inspiring the latter to develop approaches for interrogating cancer ecosystems.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Stephen B Ruiz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Tuomas Tammela
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Suresh V, Byers K, Rajesh UC, Caiazza F, Zhu G, Craik CS, Kirkwood K, Davisson VJ, Sheik DA. Translation of a Protease Turnover Assay for Clinical Discrimination of Mucinous Pancreatic Cysts. Diagnostics (Basel) 2022; 12:1343. [PMID: 35741154 PMCID: PMC9222202 DOI: 10.3390/diagnostics12061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The classification of pancreatic cyst fluids can provide a basis for the early detection of pancreatic cancer while eliminating unnecessary procedures. A candidate biomarker, gastricsin (pepsin C), was found to be present in potentially malignant mucinous pancreatic cyst fluids. A gastricsin activity assay using a magnetic bead-based platform has been developed using immobilized peptide substrates selective for gastricsin bearing a dimeric rhodamine dye. The unique dye structure allows quantitation of enzyme-cleaved product by both fluorescence and surface enhanced Raman spectroscopy (SERS). The performance of this assay was compared with ELISA assays of pepsinogen C and the standard of care, carcinoembryonic antigen (CEA), in the same clinical sample cohort. A retrospective cohort of mucinous (n = 40) and non-mucinous (n = 29) classes of pancreatic cyst fluid samples were analyzed using the new protease activity assay. For both assay detection modes, successful differentiation of mucinous and non-mucinous cyst fluid was achieved using 1 µL clinical samples. The activity-based assays in combination with CEA exhibit optimal sensitivity and specificity of 87% and 93%, respectively. The use of this gastricsin activity assay requires a minimal volume of clinical specimen, offers a rapid assay time, and shows improvements in the differentiation of mucinous and non-mucinous cysts using an accurate standardized readout of product formation, all without interfering with the clinical standard of care.
Collapse
Affiliation(s)
- Vallabh Suresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, USA; (V.S.); (V.J.D.)
| | - Kaleb Byers
- Amplified Sciences, Inc., West Lafayette, IN 47906, USA; (K.B.); (U.C.R.)
| | | | - Francesco Caiazza
- Alaunus Biosciences, Inc., San Francisco, CA 94107, USA;
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA;
| | - Gina Zhu
- Department of Surgery, University of California, San Francisco, CA 94143, USA; (G.Z.); (K.K.)
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA;
| | - Kimberly Kirkwood
- Department of Surgery, University of California, San Francisco, CA 94143, USA; (G.Z.); (K.K.)
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, USA; (V.S.); (V.J.D.)
- Amplified Sciences, Inc., West Lafayette, IN 47906, USA; (K.B.); (U.C.R.)
| | - Daniel A. Sheik
- Amplified Sciences, Inc., West Lafayette, IN 47906, USA; (K.B.); (U.C.R.)
| |
Collapse
|
4
|
Kwong GA, Ghosh S, Gamboa L, Patriotis C, Srivastava S, Bhatia SN. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat Rev Cancer 2021; 21:655-668. [PMID: 34489588 PMCID: PMC8791024 DOI: 10.1038/s41568-021-00389-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Detection of cancer at an early stage when it is still localized improves patient response to medical interventions for most cancer types. The success of screening tools such as cervical cytology to reduce mortality has spurred significant interest in new methods for early detection (for example, using non-invasive blood-based or biofluid-based biomarkers). Yet biomarkers shed from early lesions are limited by fundamental biological and mass transport barriers - such as short circulation times and blood dilution - that limit early detection. To address this issue, synthetic biomarkers are being developed. These represent an emerging class of diagnostics that deploy bioengineered sensors inside the body to query early-stage tumours and amplify disease signals to levels that could potentially exceed those of shed biomarkers. These strategies leverage design principles and advances from chemistry, synthetic biology and cell engineering. In this Review, we discuss the rationale for development of biofluid-based synthetic biomarkers. We examine how these strategies harness dysregulated features of tumours to amplify detection signals, use tumour-selective activation to increase specificity and leverage natural processing of bodily fluids (for example, blood, urine and proximal fluids) for easy detection. Finally, we highlight the challenges that exist for preclinical development and clinical translation of synthetic biomarker diagnostics.
Collapse
Affiliation(s)
- Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Sharmistha Ghosh
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lena Gamboa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Christos Patriotis
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Abstract
Engineered biocircuits designed with biological components have the capacity to expand and augment living functions. Here we demonstrate that proteases can be integrated into digital or analog biocircuits to process biological information. We first construct peptide-caged liposomes that treat protease activity as two-valued (i.e., signal is 0 or 1) operations to construct the biological equivalent of Boolean logic gates, comparators and analog-to-digital converters. We use these modules to assemble a cell-free biocircuit that can combine with bacteria-containing blood, quantify bacteria burden, and then calculate and unlock a selective drug dose. By contrast, we treat protease activity as multi-valued (i.e., signal is between 0 and 1) by controlling the degree to which a pool of enzymes is shared between two target substrates. We perform operations on these analog values by manipulating substrate concentrations and combine these operations to solve the mathematical problem Learning Parity with Noise (LPN). These results show that protease activity can be used to process biological information by binary Boolean logic, or as multi-valued analog signals under conditions where substrate resources are shared.
Collapse
Affiliation(s)
- Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, 30332, USA
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, 30332, USA.
- Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA, 30332, USA.
- Integrated Cancer Research Center, Georgia Tech, Atlanta, GA, 30332, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, 30332, USA.
| |
Collapse
|
6
|
Chan LW, Anahtar MN, Ong TH, Hern KE, Kunz RR, Bhatia SN. Engineering synthetic breath biomarkers for respiratory disease. NATURE NANOTECHNOLOGY 2020; 15:792-800. [PMID: 32690884 PMCID: PMC8173716 DOI: 10.1038/s41565-020-0723-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 05/10/2023]
Abstract
Human breath contains many volatile metabolites. However, few breath tests are currently used in the clinic to monitor disease due to bottlenecks in biomarker identification. Here we engineered breath biomarkers for respiratory disease by local delivery of protease-sensing nanoparticles to the lungs. The nanosensors shed volatile reporters upon cleavage by neutrophil elastase, an inflammation-associated protease with elevated activity in lung diseases such as bacterial infection and alpha-1 antitrypsin deficiency. After intrapulmonary delivery into mouse models with acute lung inflammation, the volatile reporters are released and expelled in breath at levels detectable by mass spectrometry. These breath signals can identify diseased mice with high sensitivity as early as 10 min after nanosensor administration. Using these nanosensors, we performed serial breath tests to monitor dynamic changes in neutrophil elastase activity during lung infection and to assess the efficacy of a protease inhibitor therapy targeting neutrophil elastase for the treatment of alpha-1 antitrypsin deficiency.
Collapse
Affiliation(s)
- Leslie W Chan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melodi N Anahtar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ta-Hsuan Ong
- Biological and Chemical Technologies Group, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, USA
| | - Kelsey E Hern
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roderick R Kunz
- Biological and Chemical Technologies Group, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
7
|
Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115811] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020; 120:3852-3889. [DOI: 10.1021/acs.chemrev.9b00739] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Robert Hein
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
9
|
Eschliman K, Bossmann SH. Protease-Activated Sensors for In Vivo Imaging of Cell Populations. Methods Mol Biol 2020; 2126:117-126. [PMID: 32112384 DOI: 10.1007/978-1-0716-0364-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biosensors are important devices that can be used to obtain information from within a living organism. They can be implanted within living tissues in order to continuously monitor for changes. This allows for personalized, noninvasive medicine, since a baseline can be more accurately established and any deviations, even slight, can be detected. These devices have applications in the treatment of diseases such as diabetes and cancer, as well as the study of pathways of interest and tailored drug dosing. Proteases within the tumor microenvironment can be studied in vivo in order to indicate the effectiveness of treatments received. This unprecedented real-time information is extremely valuable as it can be used to alter the course of treatment accordingly.
Collapse
Affiliation(s)
- Kayla Eschliman
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Stefan H Bossmann
- Department of Chemistry and Johnson Cancer Center, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
10
|
Zhuang Q, Holt BA, Kwong GA, Qiu P. Deconvolving multiplexed protease signatures with substrate reduction and activity clustering. PLoS Comput Biol 2019; 15:e1006909. [PMID: 31479443 PMCID: PMC6743790 DOI: 10.1371/journal.pcbi.1006909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/13/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Proteases are multifunctional, promiscuous enzymes that degrade proteins as well as peptides and drive important processes in health and disease. Current technology has enabled the construction of libraries of peptide substrates that detect protease activity, which provides valuable biological information. An ideal library would be orthogonal, such that each protease only hydrolyzes one unique substrate, however this is impractical due to off-target promiscuity (i.e., one protease targets multiple different substrates). Therefore, when a library of probes is exposed to a cocktail of proteases, each protease activates multiple probes, producing a convoluted signature. Computational methods for parsing these signatures to estimate individual protease activities primarily use an extensive collection of all possible protease-substrate combinations, which require impractical amounts of training data when expanding to search for more candidate substrates. Here we provide a computational method for estimating protease activities efficiently by reducing the number of substrates and clustering proteases with similar cleavage activities into families. We envision that this method will be used to extract meaningful diagnostic information from biological samples. The activity of enzymatic proteins, which are called proteases, drives numerous important processes in health and disease: including cancer, immunity, and infectious disease. Many labs have developed useful diagnostics by designing sensors that measure the activity of these proteases. However, if we want to detect multiple proteases at the same time, it becomes impractical to design sensors that only detect one protease. This is due to a phenomenon called protease promiscuity, which means that proteases will activate multiple different sensors. Computational methods have been created to solve this problem, but the challenge is that these often require large amounts of training data. Further, completely different proteases may be detected by the same subset of sensors. In this work, we design a computational method to overcome this problem by clustering similar proteases into "subfamilies", which increases estimation accuracy. Further, our method tests multiple combinations of sensors to maintain accuracy while minimizing the number of sensors used. Together, we envision that this work will increase the amount of useful information we can extract from biological samples, which may lead to better clinical diagnostics.
Collapse
Affiliation(s)
- Qinwei Zhuang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Gabriel A. Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, Georgia, United States of America
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Georgia ImmunoEngineering Consortium, Georgia Tech and Emory University, Atlanta, Georgia, United States of America
- * E-mail: (GAK); (PQ)
| | - Peng Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, Georgia, United States of America
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail: (GAK); (PQ)
| |
Collapse
|
11
|
Huang Y, Qi Y, Zhan C, Zeng F, Wu S. Diagnosing Drug-Induced Liver Injury by Multispectral Optoacoustic Tomography and Fluorescence Imaging Using a Leucine-Aminopeptidase-Activated Probe. Anal Chem 2019; 91:8085-8092. [DOI: 10.1021/acs.analchem.9b00107] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yong Huang
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yu Qi
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chenyue Zhan
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Commentary on Ivancic et al.: Enzyme kinetics from circular dichroism of insulin reveals mechanistic insights into the regulation of insulin-degrading enzyme. Biosci Rep 2018; 38:BSR20181555. [PMID: 30401732 PMCID: PMC6259020 DOI: 10.1042/bsr20181555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022] Open
Abstract
Despite the enormous number of therapeutic advances in medicine, nowadays many diseases are still incurable, mainly due to the lack of knowledge of the pathological biochemical pathways triggering those diseases. For this reason, it is compulsory for the scientific community to investigate and unveil the biomolecular mechanisms responsible for the development of those diseases, such as Alzheimer's disease and diabetes, which are widespread all over the world. In this scenario, it is of paramount importance to develop new analytical techniques and experimental procedures that are capable to make the above-mentioned investigations feasible. These new methods should allow easy performable analysis carried out in a label-free environment, in order to give reliable answers to specific biochemical questions. A recent paper published on Bioscience Reports by Ivancic et al. (https://doi.org/10.1042/BSR20181416) proposes a new analytical technique capable to reveal some mechanistic insights into the regulation of insulin-degrading enzyme (IDE), a protein involved in the above-mentioned diseases. IDE is a multifaceted enzyme having different and not well-defined roles in the cell, but it is primarily a proteolytic enzyme capable to degrade several different amyloidogenic substrates involved in different diseases. Moreover, many molecules are responsible for IDE activity modulation so that understanding how IDE activity is regulated represents a very challenging analytical task. The new analytical approach proposed by Ivancic et al. reports on the possibility to study IDE activity in an unbiased and label-free manner, representing a valid alternative assay for the investigation of any proteases degradative activity.
Collapse
|
13
|
Nishihara T, Kuno S, Nonaka H, Tabata S, Saito N, Fukuda S, Tomita M, Sando S, Soga T. Beta-galactosidase-responsive synthetic biomarker for targeted tumor detection. Chem Commun (Camb) 2018; 54:11745-11748. [PMID: 30276401 DOI: 10.1039/c8cc06068a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor biomarkers are highly desirable for the screening of patients with a risk of tumor development and progression. Here, we report a beta-galactosidase (β-gal)-responsive acetaminophen (β-GR-APAP) as a synthetic plasma biomarker for targeted tumor detection. Tumor β-gal labeling via the recognition of tumor-related antigen enabled the detection of a tumor using β-GR-APAP.
Collapse
Affiliation(s)
- Tatsuya Nishihara
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Holt BA, Mac QD, Kwong GA. Nanosensors to Detect Protease Activity In Vivo for Noninvasive Diagnostics. J Vis Exp 2018. [PMID: 30059042 DOI: 10.3791/57937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Proteases are multi-functional enzymes that specialize in the hydrolysis of peptide-bonds and control broad biological processes including homeostasis and allostasis. Moreover, dysregulated protease activity drives pathogenesis and is a functional biomarker of diseases such as cancer; therefore, the ability to detect protease activity in vivo may provide clinically relevant information for biomedical diagnostics. The goal of this protocol is to create nanosensors that probe for protease activity in vivo by producing a quantifiable signal in urine. These protease nanosensors consist of two components: a nanoparticle and substrate. The nanoparticle functions to increase circulation half-life and substrate delivery to target disease sites. The substrate is a short peptide sequence (6-8 AA), which is designed to be specific to a target protease or group of proteases. The substrate is conjugated to the surface of the nanoparticle and is terminated by a reporter, such as a fluorescent marker, for detection. As dysregulated proteases cleave the peptide substrate, the reporter is filtered into urine for quantification as a biomarker of protease activity. Herein we describe construction of a nanosensor for matrix metalloproteinase 9 (MMP9), which is associated with tumor progression and metastasis, for detection of colorectal cancer in a mouse model.
Collapse
Affiliation(s)
- Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine
| | - Quoc D Mac
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine; Parker H. Petit Institute of Bioengineering and Bioscience; Institute for Electronics and Nanotechnology, Georgia Tech; Integrated Cancer Research Center, Georgia Tech; The Georgia Immunoengineering Consortium, Emory University and Georgia Tech;
| |
Collapse
|
15
|
Dudani JS, Warren AD, Bhatia SN. Harnessing Protease Activity to Improve Cancer Care. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050549] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew D. Warren
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
16
|
Feng X, Wang Q, Liao Y, Zhou X, Wang Y, Liu W, Zhang G. A synthetic urinary probe-coated nanoparticles sensitive to fibroblast activation protein α for solid tumor diagnosis. Int J Nanomedicine 2017; 12:5359-5372. [PMID: 28794628 PMCID: PMC5538687 DOI: 10.2147/ijn.s139039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We developed fibroblast activation protein α (FAPα)-sensitive magnetic iron oxide nanoparticles (MNPs) by conjugating a substrate-reporter tandem peptide as a synthetic biomarker to the surface of MNPs (marker-MNPs). In vitro, the marker-MNPs showed stability when treated with serum or urine and exhibited high susceptibility and specificity for FAPα enzyme and 3T3/FAPα cell line. Furthermore, the marker-MNPs were administered to esophageal squamous cell carcinoma xenograft tumor mice; they reached the tumor tissues in the mice, where they were cleaved effectively by the local overexpressed FAPα to release the reporter peptide and filter it into the urine. The tumor targeting and biodistribution of marker-MNPs were verified by in vivo imaging. The cleaved reporter peptides in urine detected by enzyme-linked immunosorbent assay have high diagnostic accuracy for esophageal squamous cell carcinoma (area under the receiver-operating characteristic curve =1.0). Our study implies a promising strategy of utilizing the low-cost and noninvasive synthetic urinary probe–coated nanoparticles for the diagnosis of FAPα-positive solid tumors, except for in renal cancer.
Collapse
Affiliation(s)
- Xinwei Feng
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou
| | - Qifan Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou
| | - Yuehua Liao
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou
| | - Xie Zhou
- Department of Medical Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou
| | - Yidan Wang
- Department of Biotechnology, School of Life Science, Sun Yat-sen University, Guangzhou
| | - Wanli Liu
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou
| |
Collapse
|
17
|
Nishihara T, Inoue J, Tabata S, Murakami S, Ishikawa T, Saito N, Fukuda S, Tomita M, Soga T. Synthetic Biomarker Design by Using Analyte-Responsive Acetaminophen. Chembiochem 2017; 18:910-913. [PMID: 28236354 DOI: 10.1002/cbic.201700023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 12/13/2022]
Abstract
The use of synthetic biomarkers is an emerging technique to improve disease diagnosis. Here, we report a novel design strategy that uses analyte-responsive acetaminophen (APAP) to expand the catalogue of analytes available for synthetic biomarker development. As proof-of-concept, we designed hydrogen peroxide (H2 O2 )-responsive APAP (HR-APAP) and succeeded in H2 O2 detection with cellular and animal experiments. In fact, for blood samples following HR-APAP injection, we demonstrated that the plasma concentration ratio [APAP+APAP conjugates]/[HR-APAP] accurately reflects in vivo differences in H2 O2 levels. We anticipate that our practical methodology will be broadly useful for the preparation of various synthetic biomarkers.
Collapse
Affiliation(s)
- Tatsuya Nishihara
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Joe Inoue
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Sho Tabata
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Shinnosuke Murakami
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Takamasa Ishikawa
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Natsumi Saito
- National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka, Yamagata, 997-8511, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| |
Collapse
|
18
|
Abstract
In vivo biosensors are emerging as powerful tools in biomedical research and diagnostic medicine. Distinct from "labels" or "imaging", in vivo biosensors are designed for continuous and long-term monitoring of target analytes in real biological systems and should be selective, sensitive, reversible and biocompatible. Due to the challenges associated with meeting all of the analytical requirements, we found relatively few reports of research groups demonstrating devices that meet the strict definition in vivo. However, we identified several case studies and a range of emerging materials likely to lead to significant developments in the field.
Collapse
Affiliation(s)
- Guoxin Rong
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| | - Simon R. Corrie
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Clayton, VIC, 3800, Australia
- Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Heather A. Clark
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| |
Collapse
|
19
|
Sarode BR, Kover K, Tong PY, Zhang C, Friedman SH. Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot. Mol Pharm 2016; 13:3835-3841. [PMID: 27653828 PMCID: PMC5101575 DOI: 10.1021/acs.molpharmaceut.6b00633] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
In this work we demonstrate
that blood glucose can be controlled
remotely through light stimulated release of insulin from an injected
cutaneous depot. Human insulin was tethered to an insoluble but injectable
polymer via a linker, which was based on the light cleavable di-methoxy
nitrophenyl ethyl (DMNPE) group. This material was injected
into the skin of streptozotocin-treated diabetic rats. We observed
insulin being released into the bloodstream after a 2 min trans-cutaneous
irradiation of this site by a compact LED light source. Control animals
treated with the same material, but in which light was blocked from
the site, showed no release of insulin into the bloodstream. We also
demonstrate that additional pulses of light from the light source
result in additional pulses of insulin being absorbed into circulation.
A significant reduction in blood glucose was then observed. Together,
these results demonstrate the feasibility of using light to allow
for the continuously variable control of insulin release. This in
turn has the potential to allow for the tight control of blood glucose
without the invasiveness of insulin pumps and cannulas.
Collapse
Affiliation(s)
- Bhagyesh R Sarode
- Division of Pharmaceutical Sciences, School of Pharmacy University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Karen Kover
- Department of Endocrinology, Childrens' Mercy Hospital , Kansas City, Missouri 64108, United States.,Department of Medicine, School of Medicine, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Pei Y Tong
- Department of Endocrinology, Childrens' Mercy Hospital , Kansas City, Missouri 64108, United States
| | - Chaoying Zhang
- Department of Endocrinology, Childrens' Mercy Hospital , Kansas City, Missouri 64108, United States
| | - Simon H Friedman
- Division of Pharmaceutical Sciences, School of Pharmacy University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| |
Collapse
|
20
|
Schuerle S, Dudani JS, Christiansen MG, Anikeeva P, Bhatia SN. Magnetically Actuated Protease Sensors for in Vivo Tumor Profiling. NANO LETTERS 2016; 16:6303-6310. [PMID: 27622711 PMCID: PMC5344125 DOI: 10.1021/acs.nanolett.6b02670] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Targeted cancer therapies require a precise determination of the underlying biological processes driving tumorigenesis within the complex tumor microenvironment. Therefore, new diagnostic tools that capture the molecular activity at the disease site in vivo are needed to better understand tumor behavior and ultimately maximize therapeutic responses. Matrix metalloproteinases (MMPs) drive multiple aspects of tumorigenesis, and their activity can be monitored using engineered peptide substrates as protease-specific probes. To identify tumor specific activity profiles, local sampling of the tumor microenvironment is necessary, such as through remote control of probes, which are only activated at the tumor site. Alternating magnetic fields (AMFs) provide an attractive option to remotely apply local triggering signals because they penetrate deep into the body and are not likely to interfere with biological processes due to the weak magnetic properties of tissue. Here, we report the design and evaluation of a protease-activity nanosensor that can be remotely activated at the site of disease via an AMF at 515 kHz and 15 kA/m. Our nanosensor was composed of thermosensitive liposomes containing functionalized protease substrates that were unveiled at the target site by remotely triggered heat dissipation of coencapsulated magnetic nanoparticles (MNPs). This nanosensor was combined with a unique detection assay to quantify the amount of cleaved substrates in the urine. We applied this spatiotemporally controlled system to determine tumor protease activity in vivo and identified differences in substrate cleavage profiles between two mouse models of human colorectal cancer.
Collapse
Affiliation(s)
- Simone Schuerle
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michael G. Christiansen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding Authors: Address: Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 76-453, Cambridge, MA 02139, USA. Phone: + 1 617 324 0610, ; Address: Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 8-425, Cambridge, MA 02139, USA. Phone: + 1 617-253-3301,
| | - Sangeeta N. Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
- Corresponding Authors: Address: Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 76-453, Cambridge, MA 02139, USA. Phone: + 1 617 324 0610, ; Address: Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 8-425, Cambridge, MA 02139, USA. Phone: + 1 617-253-3301,
| |
Collapse
|
21
|
Jain PK, Ramanan V, Schepers AG, Dalvie NS, Panda A, Fleming HE, Bhatia SN. Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angew Chem Int Ed Engl 2016; 55:12440-4. [PMID: 27554600 PMCID: PMC5864249 DOI: 10.1002/anie.201606123] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The ability to remotely trigger CRISPR/Cas9 activity would enable new strategies to study cellular events with greater precision and complexity. In this work, we have developed a method to photocage the activity of the guide RNA called "CRISPR-plus" (CRISPR-precise light-mediated unveiling of sgRNAs). The photoactivation capability of our CRISPR-plus method is compatible with the simultaneous targeting of multiple DNA sequences and supports numerous modifications that can enable guide RNA labeling for use in imaging and mechanistic investigations.
Collapse
Affiliation(s)
- Piyush K Jain
- Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vyas Ramanan
- Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arnout G Schepers
- Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nisha S Dalvie
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Apekshya Panda
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heather E Fleming
- Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sangeeta N Bhatia
- Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Electrical Engineering and Computer Science, Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Jain PK, Ramanan V, Schepers AG, Dalvie NS, Panda A, Fleming HE, Bhatia SN. Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Piyush K. Jain
- Institute for Medical Engineering & Science; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Vyas Ramanan
- Institute for Medical Engineering & Science; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Arnout G. Schepers
- Institute for Medical Engineering & Science; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Nisha S. Dalvie
- Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Apekshya Panda
- Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Heather E. Fleming
- Institute for Medical Engineering & Science; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Sangeeta N. Bhatia
- Institute for Medical Engineering & Science; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Department of Electrical Engineering and Computer Science; Marble Center for Cancer Nanomedicine; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Department of Medicine; Brigham and Women's Hospital; Boston MA 02115 USA
- Broad Institute of MIT and Harvard; Cambridge MA 02139 USA
- Howard Hughes Medical Institute; Cambridge MA 02139 USA
| |
Collapse
|
23
|
Dudani JS, Buss CG, Akana RT, Kwong GA, Bhatia SN. Sustained-release synthetic biomarkers for monitoring thrombosis and inflammation using point-of-care compatible readouts. ADVANCED FUNCTIONAL MATERIALS 2016; 26:2919-2928. [PMID: 29706854 PMCID: PMC5914179 DOI: 10.1002/adfm.201505142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Postoperative infection and thromboembolism represent significant sources of morbidity and mortality but cannot be easily tracked after hospital discharge. Therefore, a molecular test that could be performed at home would significantly impact disease management. Our lab has previously developed intravenously delivered 'synthetic biomarkers' that respond to dysregulated proteases to produce a urinary signal. These assays, however, have been limited to chronic diseases or acute diseases initiated at the time of diagnostic administration. Here, we formulate a subcutaneously administered sustained release system by using small PEG scaffolds (<10 nm) to promote diffusion into the bloodstream over a day. We demonstrate the utility of a thrombin sensor to identify thrombosis and an MMP sensor to measure inflammation. Finally, we developed a companion paper ELISA using printed wax barriers with nanomolar sensitivity for urinary reporters for point-of-care detection. Our approach for subcutaneous delivery of nanosensors combined with urinary paper analysis may enable facile monitoring of at-risk patients.
Collapse
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Colin G. Buss
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Reid T.K. Akana
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gabriel A. Kwong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| |
Collapse
|
24
|
|