1
|
Yao S, Ye LH, Liu C, Liu Z, Kang N, Xu HQ, Liao JH. Observation of the anomalous Hall effect in proximity coupled Cr 2Ge 2Te 6/graphene heterostructures. NANOSCALE 2025; 17:5878-5887. [PMID: 39902579 DOI: 10.1039/d4nr04037f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Introducing magnetism into graphene is expected to exhibit unique transport phenomena. However, how to properly introduce magnetism into graphene has remained a major challenge. Here we report a method to induce spin polarization in graphene by the proximity effect. The anomalous Hall effect is clearly observed in heterostructures of Cr2Ge2Te6 (CGT)/graphene. The temperature dependence of the anomalous Hall resistance coincides with that of the magnetization of the bulk CGT. Moreover, control experiments exclude the possibility of a Lorentz force-induced nonlinear Hall signal either from the coexistence of two types of carriers in graphene or from the stray magnetic field of the CGT substrate. All of our experimental results strongly suggest that the observed anomalous Hall resistance is caused by the spin polarization in graphene induced by the magnetic proximity effect. Density functional theory calculations indicate that the spin density of the CGT would spread into the adjacent graphene and induce the spin polarization of the carriers in graphene. Our results provide an efficient and reliable way to achieve spin polarization in graphene and shed light on the development of graphene spintronic devices.
Collapse
Affiliation(s)
- S Yao
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - L H Ye
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - C Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - Z Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - N Kang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - H Q Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - J H Liao
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Sinha I, Sinha S, Naskar S, Manna S. Magnetic-proximity-induced anomalous Hall effect at the EuO/Sb 2Te 3interface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:115001. [PMID: 39740346 DOI: 10.1088/1361-648x/ada479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/31/2024] [Indexed: 01/02/2025]
Abstract
Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge. Here we utilize pulsed laser deposition to grow (111)-oriented EuO on vacuum cleaved and annealed Sb2Te3(0001) surfaces. Under suitable growth conditions, we obtain a pristine interface and surface, as evidenced by x-ray reflectivity and scanning tunneling microscopy, respectively. Despite bulk transport in the thick (2 mm) Sb2Te3layers, devices prepared for transport studies show a strong AHE, the necessary precursor to the QAHE. Our demonstration of EuO-Sb2Te3epitaxy presents a scalable thin film approach to realize QAHE devices with radically improved chemical stability as compared to competing approaches.
Collapse
Affiliation(s)
- Indraneel Sinha
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shreyashi Sinha
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Subham Naskar
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sujit Manna
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Qiu G, Yang HY, Chong SK, Cheng Y, Tai L, Wang KL. Manipulating Topological Phases in Magnetic Topological Insulators. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2655. [PMID: 37836296 PMCID: PMC10574534 DOI: 10.3390/nano13192655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Magnetic topological insulators (MTIs) are a group of materials that feature topological band structures with concurrent magnetism, which can offer new opportunities for technological advancements in various applications, such as spintronics and quantum computing. The combination of topology and magnetism introduces a rich spectrum of topological phases in MTIs, which can be controllably manipulated by tuning material parameters such as doping profiles, interfacial proximity effect, or external conditions such as pressure and electric field. In this paper, we first review the mainstream MTI material platforms where the quantum anomalous Hall effect can be achieved, along with other exotic topological phases in MTIs. We then focus on highlighting recent developments in modulating topological properties in MTI with finite-size limit, pressure, electric field, and magnetic proximity effect. The manipulation of topological phases in MTIs provides an exciting avenue for advancing both fundamental research and practical applications. As this field continues to develop, further investigations into the interplay between topology and magnetism in MTIs will undoubtedly pave the way for innovative breakthroughs in the fundamental understanding of topological physics as well as practical applications.
Collapse
Affiliation(s)
- Gang Qiu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hung-Yu Yang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| | - Su Kong Chong
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Yang Cheng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| | - Lixuan Tai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| | - Kang L. Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| |
Collapse
|
4
|
Llacsahuanga Allcca AE, Pan XC, Miotkowski I, Tanigaki K, Chen YP. Gate-Tunable Anomalous Hall Effect in Stacked van der Waals Ferromagnetic Insulator-Topological Insulator Heterostructures. NANO LETTERS 2022; 22:8130-8136. [PMID: 36215229 DOI: 10.1021/acs.nanolett.2c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The search of novel topological states, such as the quantum anomalous Hall insulator and chiral Majorana fermions, has motivated different schemes to introduce magnetism into topological insulators. A promising scheme is using the magnetic proximity effect (MPE), where a ferromagnetic insulator magnetizes the topological insulator. Most of these heterostructures are synthesized by growth techniques which prevent mixing many of the available ferromagnetic and topological insulators due to difference in growth conditions. Here, we demonstrate that MPE can be obtained in heterostructures stacked via the dry transfer of flakes of van der Waals ferromagnetic and topological insulators (Cr2Ge2Te6/BiSbTeSe2), as evidenced in the observation of an anomalous Hall effect (AHE). Furthermore, devices made from these heterostructures allow modulation of the AHE when controlling the carrier density via electrostatic gating. These results show that simple mechanical transfer of magnetic van der Waals materials provides another possible avenue to magnetize topological insulators by MPE.
Collapse
Affiliation(s)
- Andres E Llacsahuanga Allcca
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Quantum Science and Engineering Institute and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xing-Chen Pan
- WPI Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Ireneusz Miotkowski
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Katsumi Tanigaki
- WPI Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577, Japan
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Yong P Chen
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Quantum Science and Engineering Institute and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- WPI Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577, Japan
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Institute of Physics and Astronomy and Villum Center for Hybrid Quantum Materials and Devices, Aarhus University, 8000 Aarhus-C, Denmark
- Center for Science and Innovation in Spintronics, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
5
|
Proximity-Induced Magnetism in a Topological Insulator/Half-Metallic Ferromagnetic Thin Film Heterostructure. COATINGS 2022. [DOI: 10.3390/coatings12060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Topological insulator (TI) Bi2Se3 thin films were prepared on half-metallic ferromagnetic La0.7Sr0.3MnO3 thin film by magnetron sputtering, forming a TI/FM heterostructure. The conductivity of Bi2Se3was modified by La0.7Sr0.3MnO3 at high- and low-temperature regions via different mechanisms, which could be explained by the short-range interactions and long-range interaction between ferromagnetic insulator and Bi2Se3 due to the proximity effect. Magnetic and transport measurements prove that the ferromagnetic phase and extra magnetic moment are induced in Bi2Se3 films. The weak anti-localized (WAL) effect was suppressed in Bi2Se3 films, accounting for the magnetism of La0.7Sr0.3MnO3 layers. This work clarifies the special behavior in Bi2Se3/La0.7Sr0.3MnO3 heterojunctions, which provides an effective way to study the magnetic proximity effect of the ferromagnetic phase in topological insulators.
Collapse
|
6
|
Bhattacharjee N, Mahalingam K, Fedorko A, Lauter V, Matzelle M, Singh B, Grutter A, Will-Cole A, Page M, McConney M, Markiewicz R, Bansil A, Heiman D, Sun NX. Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOS-Compatible Sputtering Technique. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108790. [PMID: 35132680 DOI: 10.1002/adma.202108790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Breaking time-reversal symmetry by introducing magnetic order, thereby opening a gap in the topological surface state bands, is essential for realizing useful topological properties such as the quantum anomalous Hall and axion insulator states. In this work, a novel topological antiferromagnetic (AFM) phase is created at the interface of a sputtered, c-axis-oriented, topological insulator/ferromagnet heterostructure-Bi2 Te3 /Ni80 Fe20 because of diffusion of Ni in Bi2 Te3 (Ni-Bi2 Te3 ). The AFM property of the Ni-Bi2 Te3 interfacial layer is established by observation of spontaneous exchange bias in the magnetic hysteresis loop and compensated moments in the depth profile of the magnetization using polarized neutron reflectometry. Analysis of the structural and chemical properties of the Ni-Bi2 Te3 layer is carried out using selected-area electron diffraction, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. These studies, in parallel with first-principles calculations, indicate a solid-state chemical reaction that leads to the formation of Ni-Te bonds and the presence of topological antiferromagnetic (AFM) compound NiBi2 Te4 in the Ni-Bi2 Te3 interface layer. The Neél temperature of the Ni-Bi2 Te3 layer is ≈63 K, which is higher than that of typical magnetic topological insulators (MTIs). The presented results provide a pathway toward industrial complementary metal-oxide-semiconductor (CMOS)-process-compatible sputtered-MTI heterostructures, leading to novel materials for topological quantum devices.
Collapse
Affiliation(s)
- Nirjhar Bhattacharjee
- Northeastern University, Department of Electrical and Computer Engineering, Boston, MA, 02115, USA
| | - Krishnamurthy Mahalingam
- Air Force Research Laboratory, Nano-electronic Materials Branch, Wright Patterson Air Force Base, Boston, OH, 05433, USA
| | - Adrian Fedorko
- Northeastern University, Department of Physics, Boston, MA, 02115, USA
| | - Valeria Lauter
- Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Boston, TN, 37831, USA
| | - Matthew Matzelle
- Northeastern University, Department of Physics, Boston, MA, 02115, USA
| | - Bahadur Singh
- Tata Institute of Fundamental Research, Department of Condensed Matter Physics and Materials Science, Mumbai, 400005, India
| | - Alexander Grutter
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Alexandria Will-Cole
- Northeastern University, Department of Electrical and Computer Engineering, Boston, MA, 02115, USA
| | - Michael Page
- Air Force Research Laboratory, Nano-electronic Materials Branch, Wright Patterson Air Force Base, Boston, OH, 05433, USA
| | - Michael McConney
- Air Force Research Laboratory, Nano-electronic Materials Branch, Wright Patterson Air Force Base, Boston, OH, 05433, USA
| | - Robert Markiewicz
- Northeastern University, Department of Physics, Boston, MA, 02115, USA
| | - Arun Bansil
- Northeastern University, Department of Physics, Boston, MA, 02115, USA
| | - Don Heiman
- Northeastern University, Department of Physics, Boston, MA, 02115, USA
- Plasma Science and Fusion Center, MIT, Cambridge, MA, 02139, USA
| | - Nian Xiang Sun
- Northeastern University, Department of Electrical and Computer Engineering, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Riddiford LJ, Grutter AJ, Pillsbury T, Stanley M, Reifsnyder Hickey D, Li P, Alem N, Samarth N, Suzuki Y. Understanding Signatures of Emergent Magnetism in Topological Insulator/Ferrite Bilayers. PHYSICAL REVIEW LETTERS 2022; 128:126802. [PMID: 35394317 DOI: 10.1103/physrevlett.128.126802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Magnetic insulator-topological insulator heterostructures have been studied in search of chiral edge states via proximity induced magnetism in the topological insulator, but these states have been elusive. We identified MgAl_{0.5}Fe_{1.5}O_{4}/Bi_{2}Se_{3} bilayers for a possible magnetic proximity effect. Electrical transport and polarized neutron reflectometry suggest a proximity effect, but structural data indicate a disordered interface as the origin of the magnetic response. Our results provide a strategy via correlation of microstructure with magnetic data to confirm a magnetic proximity effect.
Collapse
Affiliation(s)
- Lauren J Riddiford
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
| | - Alexander J Grutter
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Timothy Pillsbury
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Max Stanley
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Danielle Reifsnyder Hickey
- Department of Materials Science, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Peng Li
- Department of Electrical Engineering and Computer Science, Auburn University, Auburn University, Auburn, Alabama 36849, USA
| | - Nasim Alem
- Department of Materials Science, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nitin Samarth
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuri Suzuki
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
8
|
Liu J, Hesjedal T. Magnetic Topological Insulator Heterostructures: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021:e2102427. [PMID: 34665482 DOI: 10.1002/adma.202102427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Topological insulators (TIs) provide intriguing prospects for the future of spintronics due to their large spin-orbit coupling and dissipationless, counter-propagating conduction channels in the surface state. The combination of topological properties and magnetic order can lead to new quantum states including the quantum anomalous Hall effect that was first experimentally realized in Cr-doped (Bi,Sb)2 Te3 films. Since magnetic doping can introduce detrimental effects, requiring very low operational temperatures, alternative approaches are explored. Proximity coupling to magnetically ordered systems is an obvious option, with the prospect to raise the temperature for observing the various quantum effects. Here, an overview of proximity coupling and interfacial effects in TI heterostructures is presented, which provides a versatile materials platform for tuning the magnetic and topological properties of these exciting materials. An introduction is first given to the heterostructure growth by molecular beam epitaxy and suitable structural, electronic, and magnetic characterization techniques. Going beyond transition-metal-doped and undoped TI heterostructures, examples of heterostructures are discussed, including rare-earth-doped TIs, magnetic insulators, and antiferromagnets, which lead to exotic phenomena such as skyrmions and exchange bias. Finally, an outlook on novel heterostructures such as intrinsic magnetic TIs and systems including 2D materials is given.
Collapse
Affiliation(s)
- Jieyi Liu
- Clarendon Laboratory, Department of Physics University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Thorsten Hesjedal
- Clarendon Laboratory, Department of Physics University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| |
Collapse
|
9
|
Bhattacharyya S, Akhgar G, Gebert M, Karel J, Edmonds MT, Fuhrer MS. Recent Progress in Proximity Coupling of Magnetism to Topological Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007795. [PMID: 34185344 DOI: 10.1002/adma.202007795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 05/08/2023]
Abstract
Inducing long-range magnetic order in 3D topological insulators can gap the Dirac-like metallic surface states, leading to exotic new phases such as the quantum anomalous Hall effect or the axion insulator state. These magnetic topological phases can host robust, dissipationless charge and spin currents or unique magnetoelectric behavior, which can be exploited in low-energy electronics and spintronics applications. Although several different strategies have been successfully implemented to realize these states, to date these phenomena have been confined to temperatures below a few Kelvin. This review focuses on one strategy: inducing magnetic order in topological insulators by proximity of magnetic materials, which has the capability for room temperature operation, unlocking the potential of magnetic topological phases for applications. The unique advantages of this strategy, the important physical mechanisms facilitating magnetic proximity effect, and the recent progress to achieve, understand, and harness proximity-coupled magnetic order in topological insulators are discussed. Some emerging new phenomena and applications enabled by proximity coupling of magnetism and topological materials, such as skyrmions and the topological Hall effect, are also highlighted, and the authors conclude with an outlook on remaining challenges and opportunities in the field.
Collapse
Affiliation(s)
- Semonti Bhattacharyya
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Golrokh Akhgar
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Matthew Gebert
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Julie Karel
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark T Edmonds
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Michael S Fuhrer
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| |
Collapse
|
10
|
Yang CY, Pan L, Grutter AJ, Wang H, Che X, He QL, Wu Y, Gilbert DA, Shafer P, Arenholz E, Wu H, Yin G, Deng P, Borchers JA, Ratcliff W, Wang KL. Termination switching of antiferromagnetic proximity effect in topological insulator. SCIENCE ADVANCES 2020; 6:eaaz8463. [PMID: 32851159 PMCID: PMC7423361 DOI: 10.1126/sciadv.aaz8463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/26/2020] [Indexed: 05/23/2023]
Abstract
This work reports the ferromagnetism of topological insulator, (Bi,Sb)2Te3 (BST), with a Curie temperature of approximately 120 K induced by magnetic proximity effect (MPE) of an antiferromagnetic CrSe. The MPE was shown to be highly dependent on the stacking order of the heterostructure, as well as the interface symmetry: Growing CrSe on top of BST results in induced ferromagnetism, while growing BST on CrSe yielded no evidence of an MPE. Cr-termination in the former case leads to double-exchange interactions between Cr3+ surface states and Cr2+ bulk states. This Cr3+-Cr2+ exchange stabilizes the ferromagnetic order localized at the interface and magnetically polarizes the BST Sb band. In contrast, Se-termination at the CrSe/BST interface yields no detectable MPE. These results directly confirm the MPE in BST films and provide critical insights into the sensitivity of the surface state.
Collapse
Affiliation(s)
- Chao-Yao Yang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Lei Pan
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Alexander J. Grutter
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Haiying Wang
- College of Physics and Material Science, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Che
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Qing Lin He
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Yingying Wu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Dustin A. Gilbert
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Cornell High Energy Synchrotron Source, Ithaca, NY 14853, USA
| | - Hao Wu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Gen Yin
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Peng Deng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
| | - Julie Ann Borchers
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - William Ratcliff
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Kang L. Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Pan L, Grutter A, Zhang P, Che X, Nozaki T, Stern A, Street M, Zhang B, Casas B, He QL, Choi ES, Disseler SM, Gilbert DA, Yin G, Shao Q, Deng P, Wu Y, Liu X, Kou X, Masashi S, Han X, Binek C, Chambers S, Xia J, Wang KL. Observation of Quantum Anomalous Hall Effect and Exchange Interaction in Topological Insulator/Antiferromagnet Heterostructure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001460. [PMID: 32691882 DOI: 10.1002/adma.202001460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Integration of a quantum anomalous Hall insulator with a magnetically ordered material provides an additional degree of freedom through which the resulting exotic quantum states can be controlled. Here, an experimental observation is reported of the quantum anomalous Hall effect in a magnetically-doped topological insulator grown on the antiferromagnetic insulator Cr2 O3 . The exchange coupling between the two materials is investigated using field-cooling-dependent magnetometry and polarized neutron reflectometry. Both techniques reveal strong interfacial interaction between the antiferromagnetic order of the Cr2 O3 and the magnetic topological insulator, manifested as an exchange bias when the sample is field-cooled under an out-of-plane magnetic field, and an exchange spring-like magnetic depth profile when the system is magnetized within the film plane. These results identify antiferromagnetic insulators as suitable candidates for the manipulation of magnetic and topological order in topological insulator films.
Collapse
Affiliation(s)
- Lei Pan
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Alexander Grutter
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Peng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Xiaoyu Che
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Tomohiro Nozaki
- Department of Electronic Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Alex Stern
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Mike Street
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, 68588, USA
| | - Bing Zhang
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, China
| | - Brian Casas
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Qing Lin He
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Eun Sang Choi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310-3706, USA
| | - Steven M Disseler
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Dustin A Gilbert
- Department of Materials Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Gen Yin
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Qiming Shao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Peng Deng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Yingying Wu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Xiaoyang Liu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Xufeng Kou
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Sahashi Masashi
- Department of Electronic Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Xiaodong Han
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, China
| | - Christian Binek
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, 68588, USA
| | - Scott Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jing Xia
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Kang L Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Physics, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
12
|
Ng SM, Wang H, Liu Y, Wong HF, Yau HM, Suen CH, Wu ZH, Leung CW, Dai JY. High-Temperature Anomalous Hall Effect in a Transition Metal Dichalcogenide Ferromagnetic Insulator Heterostructure. ACS NANO 2020; 14:7077-7084. [PMID: 32407078 DOI: 10.1021/acsnano.0c01815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Integration of transition metal dichalcogenides (TMDs) on ferromagnetic materials (FM) may yield fascinating physics and promise for electronics and spintronic applications. In this work, high-temperature anomalous Hall effect (AHE) in the TMD ZrTe2 thin film using a heterostructure approach by depositing it on a ferrimagnetic insulator YIG (Y3Fe5O12, yttrium iron garnet) is demonstrated. In this heterostructure, significant anomalous Hall effect can be observed at temperatures up to at least 400 K, which is a record high temperature for the observation of AHE in TMDs, and the large RAHE is more than 1 order of magnitude larger than those previously reported values in topological insulators or TMD-based heterostructures. A complicated interface with additional ZrO2 and amorphous YIG layers is actually observed between ZrTe2 and YIG. The magnetization of interfacial reaction-induced ZrO2 and YIG is believed to play a crucial role in the induced high-temperature AHE in the ZrTe2. These results present a promising system for the spintronic device applications, and it may shed light on the designing approach to introduce magnetism to TMDs at room temperature.
Collapse
Affiliation(s)
- Sheung Mei Ng
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, P.R. China
| | - Huichao Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, P.R. China
- School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yukuai Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, P.R. China
| | - Hon Fai Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, P.R. China
| | - Hei Man Yau
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, P.R. China
| | - Chun Hung Suen
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, P.R. China
| | - Ze Han Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, P.R. China
| | - Chi Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, P.R. China
| | - Ji-Yan Dai
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, P.R. China
| |
Collapse
|
13
|
Pan L, Liu X, He QL, Stern A, Yin G, Che X, Shao Q, Zhang P, Deng P, Yang CY, Casas B, Choi ES, Xia J, Kou X, Wang KL. Probing the low-temperature limit of the quantum anomalous Hall effect. SCIENCE ADVANCES 2020; 6:eaaz3595. [PMID: 32596443 PMCID: PMC7299611 DOI: 10.1126/sciadv.aaz3595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 05/05/2020] [Indexed: 05/23/2023]
Abstract
Quantum anomalous Hall effect has been observed in magnetically doped topological insulators. However, full quantization, up until now, is limited within the sub-1 K temperature regime, although the material's magnetic ordering temperature can go beyond 100 K. Here, we study the temperature limiting factors of the effect in Cr-doped (BiSb)2Te3 systems using both transport and magneto-optical methods. By deliberate control of the thin-film thickness and doping profile, we revealed that the low occurring temperature of quantum anomalous Hall effect in current material system is a combined result of weak ferromagnetism and trivial band involvement. Our findings may provide important insights into the search for high-temperature quantum anomalous Hall insulator and other topologically related phenomena.
Collapse
Affiliation(s)
- Lei Pan
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyang Liu
- School of Information Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Qing Lin He
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Alexander Stern
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Gen Yin
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyu Che
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qiming Shao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Peng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peng Deng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chao-Yao Yang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brian Casas
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Eun Sang Choi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310-3706, USA
| | - Jing Xia
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Xufeng Kou
- School of Information Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Kang L. Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Che X, Pan Q, Vareskic B, Zou J, Pan L, Zhang P, Yin G, Wu H, Shao Q, Deng P, Wang KL. Strongly Surface State Carrier-Dependent Spin-Orbit Torque in Magnetic Topological Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907661. [PMID: 32108391 DOI: 10.1002/adma.201907661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The topological surface states (TSS) in topological insulators (TIs) can exert strong spin-orbit torque (SOT) on adjacent magnetization, offering great potential in implementing energy-efficient magnetic memory devices. However, there are large discrepancies among the reported spin Hall angle values in TIs, and its temperature dependence still remains elusive. Here, the spin Hall angle in a modulation-doped Cr-Bix Sb2- x Te3 (Cr-BST) film is quantitatively determined via both transport and optic approaches, where consistent results are obtained. A large spin Hall angle of ≈90 in the modulation-doped Cr-BST film is demonstrated at 2.5 K, and the spin Hall angle drastically decreases to 0.3-0.5 as the temperature increases. Moreover, by tuning the top TSS carrier concentration, a competition between the top and bottom TSS in contributing to SOT is observed. The above phenomena can account for the large discrepancies among the previously reported spin Hall angle values and reveal the unique role of TSS in generating SOT.
Collapse
Affiliation(s)
- Xiaoyu Che
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Quanjun Pan
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Božo Vareskic
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jingyi Zou
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Lei Pan
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Peng Zhang
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Gen Yin
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Hao Wu
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Qiming Shao
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Peng Deng
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Kang L Wang
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
15
|
Jeong K, Park H, Chae J, Sim KI, Yang WJ, Kim JH, Hong SB, Kim JH, Cho MH. Topological Phase Control of Surface States in Bi 2Se 3 via Spin-Orbit Coupling Modulation through Interface Engineering between HfO 2-X. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12215-12226. [PMID: 32073823 DOI: 10.1021/acsami.9b17555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The direct control of topological surface states in topological insulators is an important prerequisite for the application of these materials. Conventional attempts to utilize magnetic doping, mechanical tuning, structural engineering, external bias, and external magnetic fields suffer from a lack of reversible switching and have limited tunability. We demonstrate the direct control of topological phases in a bismuth selenide (Bi2Se3) topological insulator in 3 nm molecular beam epitaxy-grown films through the hybridization of the topological surface states with the hafnium (Hf) d-orbitals in the topmost layer of an underlying oxygen-deficient hafnium oxide (HfO2) substrate. The higher angular momentum of the d-orbitals of Hf is hybridized strongly by topological insulators, thereby enhancing the spin-orbit coupling and perturbing the topological surface states asymmetry in Bi2Se3. As the oxygen defect is cured or generated reversibly by external electric fields, our research facilitates the complete electrical control of the topological phases of topological insulators by controlling the defect density in the adjacent transition metal oxide. In addition, this mechanism can be applied in other related topological materials such as Weyl and Dirac semimetals in future endeavors to facilitate practical applications in unit-element devices for quantum computing and quantum communication.
Collapse
Affiliation(s)
- Kwangsik Jeong
- Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hanbum Park
- Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jimin Chae
- Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kyung-Ik Sim
- Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Republic of Korea
| | - Won Jun Yang
- Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jong-Hoon Kim
- Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Republic of Korea
| | - Seok-Bo Hong
- Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jae Hoon Kim
- Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Republic of Korea
| | - Mann-Ho Cho
- Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
16
|
Yao X, Gao B, Han MG, Jain D, Moon J, Kim JW, Zhu Y, Cheong SW, Oh S. Record High-Proximity-Induced Anomalous Hall Effect in (Bi xSb 1-x) 2Te 3 Thin Film Grown on CrGeTe 3 Substrate. NANO LETTERS 2019; 19:4567-4573. [PMID: 31185718 DOI: 10.1021/acs.nanolett.9b01495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quantum anomalous Hall effect (QAHE) can only be realized at extremely low temperatures in magnetically doped topological insulators (TIs) due to limitations inherent with the doping process. In an effort to boost the quantization temperature of QAHE, the magnetic proximity effect in magnetic insulator/TI heterostructures has been extensively investigated. However, the observed anomalous Hall resistance has never been more than several ohms, presumably owing to the interfacial disorders caused by the structural and chemical mismatch. Here, we show that, by growing (BixSb1-x)2Te3 (BST) thin films on structurally and chemically well-matched, ferromagnetic-insulating CrGeTe3 (CGT) substrates, the proximity-induced anomalous Hall resistance can be enhanced by more than an order of magnitude. This sheds light on the importance of structural and chemical matches for magnetic insulator/TI proximity systems.
Collapse
Affiliation(s)
- Xiong Yao
- Center for Quantum Materials Synthesis and Department of Physics and Astronomy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Bin Gao
- Department of Physics and Astronomy , Rice University , Houston , Texas 77005 , United States
| | - Myung-Geun Han
- Condensed Matter Physics and Materials Science , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Deepti Jain
- Department of Physics and Astronomy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Jisoo Moon
- Department of Physics and Astronomy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Jae Wook Kim
- Department of Physics and Astronomy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Sang-Wook Cheong
- Center for Quantum Materials Synthesis and Department of Physics and Astronomy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Seongshik Oh
- Center for Quantum Materials Synthesis and Department of Physics and Astronomy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
17
|
Hou Y, Kim J, Wu R. Magnetizing topological surface states of Bi 2Se 3 with a CrI 3 monolayer. SCIENCE ADVANCES 2019; 5:eaaw1874. [PMID: 31172028 PMCID: PMC6544448 DOI: 10.1126/sciadv.aaw1874] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/23/2019] [Indexed: 05/23/2023]
Abstract
To magnetize surfaces of topological insulators without damaging their topological feature is a crucial step for the realization of the quantum anomalous Hall effect (QAHE) and remains as a challenging task. Through density functional calculations, we found that adsorption of a semiconducting two-dimensional van der Waals (2D-vdW) ferromagnetic CrI3 monolayer can create a sizable spin splitting at the Dirac point of the topological surface states of Bi2Se3 films. Furthermore, general rules that connect different quantum and topological parameters are established through model analyses. This work provides a useful guideline for the realization of QAHE at high temperatures in heterostructures of 2D-vdW magnetic monolayers and topological insulators.
Collapse
Affiliation(s)
- Yusheng Hou
- Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, USA
| | - Jeongwoo Kim
- Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, USA
- Department of Physics, Incheon National University, Incheon 22012, Korea
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, USA
| |
Collapse
|
18
|
Li L, Wang Y, Wang Z, Liu Y, Wang B. Topological Insulator GMR Straintronics for Low-Power Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28789-28795. [PMID: 30058327 DOI: 10.1021/acsami.8b09664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A quantum spin Hall insulator, i.e., topological insulator (TI), is a natural candidate for low-power electronics and spintronics because of its intrinsic dissipationless feature. Recent density functional theory and scanning tunneling spectroscopy experiments show that the mechanical strain allows dynamic, continuous, and reversible modulations of the topological surface states within the topological phase and hence opens prospects for TI straintronics. Here, we combine the mechanical strain and the giant magnetoresistance (GMR) of a ferromagnet-TI (FM-TI) junction to construct a novel TI GMR straintronics device. Such a FM-strained-FM-TI junction permits several energy spectral ranges for 100% GMR and a robust strain-controllable magnetic switch. Beyond the 100% GMR energy range, we observe a strain-modulated oscillating GMR, which is an alternative hallmark of the Fabry-Pérot quantum interference of Dirac surface states. These strain-sensitive GMR responses indicate that FM-strained-FM-TI junctions are very favorable for practical applications for low-power nanoscale strain sensors.
Collapse
Affiliation(s)
- Lingzhi Li
- School of Engineering , Sun Yat-sen University , Guangzhou 510006 , China
| | - Yunhua Wang
- Sino-French Institute of Nuclear Engineering and Technology , Sun Yat-sen University , Zhuhai 519082 , China
- State Key Laboratory of Optoelectronic Materials and Technologies , Sun Yat-sen University , Guangzhou 510275 , China
| | - Zongtan Wang
- School of Engineering , Sun Yat-sen University , Guangzhou 510006 , China
| | - Yulan Liu
- School of Engineering , Sun Yat-sen University , Guangzhou 510006 , China
| | - Biao Wang
- Sino-French Institute of Nuclear Engineering and Technology , Sun Yat-sen University , Zhuhai 519082 , China
- State Key Laboratory of Optoelectronic Materials and Technologies , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|