1
|
Wu X, Cheng S, Cheng D, Su X, Nie G, Wu C, Liu Y, Zhan S. Bright White Upconversion Luminescence under Low Excitation Power Density with Sensitive Temperature Monitoring. Inorg Chem 2025; 64:7325-7336. [PMID: 40202206 DOI: 10.1021/acs.inorgchem.4c05323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Generating white luminescence at the nanoscale is highly desirable for applications in cell imaging and optical sensing, where nanoscale photon sources are essential. However, achieving efficient white upconversion luminescence (UCL) remains a substantial challenge. In this study, we propose a method to achieve ultrastrong white UCL by spatially separating Yb3+/Er3+ and Yb3+/Tm3+ ion pairs into distinct layers within a core/multishell nanoparticle (NaYF4@NaYbF4:1.375%Tm@NaYF4@NaYbF4:20%Er@NaYF4, denoted as C-SSSS). The introduction of an inert NaYF4 interlayer (second shell) is critical, as it controls energy transfer between Er3+ and Tm3+ ions and suppresses nonradiative cross-relaxation. Under 980 nm excitation, the C-SSSS nanoparticles exhibit white emission intensity 37.1 times greater than that of core-only nanoparticles (NaYbF4:0.5%Tm, 0.5%Er). Furthermore, optimizing the inert core size to 85 nm maximizes the effective excitation volume of the Yb-Tm-doped active layer, enabling precise control of luminescence intensity and strong white light emission. The C-SSSS nanoparticles also demonstrate exceptional thermal sensitivity, with a thermometry sensitivity 2.5 times higher than that of core-only nanoparticles, attributed to lattice distortion at the NaYF4@NaYbF4 interface. This work highlights the dual functionality of ultrastrong white UCL and high-performance luminescent thermometry in a single-nanomaterial system.
Collapse
Affiliation(s)
- Xiaofeng Wu
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, P. R. China
- Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection Technology, Foshan University, Foshan 528000, P. R. China
| | - Shengbin Cheng
- College of Electrical and Information Engineering, Hunan University, Changsha 411082, P. R. China
| | - Dong Cheng
- College of Electrical and Information Engineering, Hunan University, Changsha 411082, P. R. China
| | - Xin Su
- College of Electrical and Information Engineering, Hunan University, Changsha 411082, P. R. China
| | - Guozheng Nie
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Chuangxin Wu
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Yunxin Liu
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Shiping Zhan
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, P. R. China
- Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection Technology, Foshan University, Foshan 528000, P. R. China
| |
Collapse
|
2
|
Wang J, Zhou Y, Huang D, Liao C, Zhou H, Guo P, Li Z, Zhou G, Yu X, Hu J. Linearly Polarized Broadband Emission and Multiwavelength Lasing in Solution-Processed Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403017. [PMID: 38739121 DOI: 10.1002/adma.202403017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Indexed: 05/14/2024]
Abstract
A miniature laser with linear polarization is a long sought-after component of photonic integrated circuits. In particular, for multiwavelength polarization lasers, it supports simultaneous access to multiple, widely varying laser wavelengths in a small spatial region, which is of great significance for advancing applications such as optical computing, optical storage, and optical sensing. However, there is a trade-off between the size of small-scale lasers and laser performance, and multiwavelength co-gain of laser media and multicavity micromachining in the process of laser miniaturization remain as significant challenges. Herein, room-temperature linearly polarized multiwavelength lasers in the visible and near-infrared wavelength ranges are demonstrated, by fabricating random cavities scattered with silica in an Er-doped Cs2Ag0.4Na0.6In0.98Bi0.02Cl6 double-perovskite quantum dots gain membrane. By regulating the local symmetry and enabling effective energy transfer in nanocrystals, multiwavelength lasers with ultralow thresholds are achieved at room temperature. The maximum degree of polarization reaches 0.89. With their advantages in terms of miniaturization, ultralow power consumption, and adaptability for integration, these lasers offer a prospective light source for future photonic integrated circuits aimed at high-capacity optical applications.
Collapse
Affiliation(s)
- Jiaxuan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yifei Zhou
- Graduate School of Arts and Science, Boston University, Boston, MA, 02215, USA
| | - Dapeng Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chuan Liao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Haifeng Zhou
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Peng Guo
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zexin Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Guangjun Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jifan Hu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
3
|
Hou CF, Tsui WA, Chou RJ, Hsu CH, Feria DN, Lin TY, Chen YF. Speckle-Free, Angle-Free, Cavity-Free White Laser with a High Color Rendering Index. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11489-11496. [PMID: 38393972 PMCID: PMC10921373 DOI: 10.1021/acsami.3c17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
The freedom from efficiency droop motivates monochromatic lasers to progress in general lighting applications due to the demand for more efficient and sustainable light sources. Still, a white light based on monochromatic lasers with high lighting quality, such as a high color rendering ability, an angle-independent output, and a speckle-free illumination, has not yet been fabricated nor demonstrated. Random lasers, with the special mechanism caused by multiple scattering, the angle-free emission, and the uncomplicated fabrication processes, inspire us to investigate the feasibility of utilizing them in general lighting. In this work, a white random laser with a high color rendering index (CRI) value, regardless of pumping energy and observing direction, was performed and discussed. We also investigated the stability of white RL as its CIE chromaticity coordinates exhibit negligible differences with increasing pump energy density, retaining its high-CRI measurement. Also, it exhibits angle-independent emission while having a high color rendering ability. After passing through a scattering film, it generated no speckles compared to the conventional laser. We demonstrated the advances in white laser illumination, showing that a white random laser is promising to be applied for high-brightness illumination, biological-friendly lighting, accurate color selections, and medical sensing.
Collapse
Affiliation(s)
- Cheng-Fu Hou
- Department
of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-An Tsui
- Department
of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung City 202301, Taiwan
| | - Rou-Jun Chou
- Department
of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hao Hsu
- Department
of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung City 202301, Taiwan
| | - Denice N. Feria
- Department
of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung City 202301, Taiwan
| | - Tai-Yuan Lin
- Department
of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung City 202301, Taiwan
| | - Yang-Fang Chen
- Department
of Physics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Shih CT, Chao YC, Shen JL, Chen YF. Enhanced Förster resonance energy transfer on layered metal-dielectric hyperbolic metamaterials: an excellent platform for low-threshold laser action. OPTICS EXPRESS 2023; 31:12669-12679. [PMID: 37157422 DOI: 10.1364/oe.485954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Förster resonance energy transfer (FRET) is a well-known physical phenomenon, which has been widely used in a variety of fields, spanning from chemistry, and physics to optoelectronic devices. In this study, giant enhanced FRET for donor-acceptor CdSe/ZnS quantum dot (QD) pairs placed on top of Au/MoO3 multilayer hyperbolic metamaterials (HMMs) has been realized. An enhanced FRET transfer efficiency as high as 93% was achieved for the energy transfer from a blue-emitting QD to a red-emitting QD, greater than that of other QD-based FRET in previous studies. Experimental results show that the random laser action of the QD pairs is greatly increased on a hyperbolic metamaterial by the enhanced FRET effect. The lasing threshold with assistance of the FRET effect can be reduced by 33% for the mixed blue- and red-emitting as QDs compared to the pure red-emitting QDs. The underlying origins can be well understood based on the combination of several significant factors, including spectral overlap of donor emission and acceptor absorption, the formation of coherent closed loops due to multiple scatterings, an appropriate design of HMMs, and the enhanced FRET assisted by HMMs.
Collapse
|
5
|
Oh C, Ma HJ, Lee K, Kim DK, Park Y. Non-resonant lasing in a deep-hole scattering cavity. OPTICS EXPRESS 2022; 30:47816-47825. [PMID: 36558700 DOI: 10.1364/oe.475610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Random lasers are promising in the spectral regime, wherein conventional lasers are unavailable, with advantages of low fabrication costs and applicability of diverse gain materials. However, their practical application is hindered by high threshold powers, low power efficiency, and difficulties in light collection. Here, we demonstrate a power-efficient easy-to-fabricate non-resonant laser using a deep hole on a porous gain material. The laser action in this counterintuitive cavity was enabled by non-resonant feedback from strong diffuse reflections on the inner surface. Additionally, significant enhancements in slope efficiency, threshold power, and directionality were obtained from cavities fabricated on a porous Nd:YAG ceramic.
Collapse
|
6
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
7
|
Tonkaev P, Sinev IS, Rybin MV, Makarov SV, Kivshar Y. Multifunctional and Transformative Metaphotonics with Emerging Materials. Chem Rev 2022; 122:15414-15449. [PMID: 35549165 DOI: 10.1021/acs.chemrev.1c01029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Future technologies underpinning multifunctional physical and chemical systems and compact biological sensors will rely on densely packed transformative and tunable circuitry employing nanophotonics. For many years, plasmonics was considered as the only available platform for subwavelength optics, but the recently emerged field of resonant metaphotonics may provide a versatile practical platform for nanoscale science by employing resonances in high-index dielectric nanoparticles and metasurfaces. Here, we discuss the recently emerged field of metaphotonics and describe its connection to material science and chemistry. For tunabilty, metaphotonics employs a variety of the recently highlighted materials such as polymers, perovskites, transition metal dichalcogenides, and phase change materials. This allows to achieve diverse functionalities of metasystems and metasurfaces for efficient spatial and temporal control of light by employing multipolar resonances and the physics of bound states in the continuum. We anticipate expanding applications of these concepts in nanolasers, tunable metadevices, metachemistry, as well as a design of a new generation of chemical and biological ultracompact sensing devices.
Collapse
Affiliation(s)
- Pavel Tonkaev
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Ivan S Sinev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Mikhail V Rybin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia.,Ioffe Institute, Russian Academy of Science, St. Petersburg 194021, Russia
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
8
|
Shang Y, Chen T, Ma T, Hao S, Lv W, Jia D, Yang C. Advanced lanthanide doped upconversion nanomaterials for lasing emission. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. MATERIALS HORIZONS 2022; 9:1167-1195. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
10
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
11
|
Lin HI, Tan HY, Liao YM, Shen KC, Shalaginov MY, Kataria M, Chen CT, Chang JW, Chen YF. A Transferrable, Adaptable, Free-Standing, and Water-Resistant Hyperbolic Metamaterial. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49224-49231. [PMID: 34609827 DOI: 10.1021/acsami.1c15481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hyperbolic metamaterials (HMMs) have attracted significant attention due to the profound manipulation of the photonic density of states, resulting in the efficient optoelectronic devices with the enhanced light-matter interaction. HMMs are conventionally built on rigid large-size substrates with poor conformability and the absence of flexibility. Here, we demonstrate a grating collageable HMM (GCHMM), which is composed of eight alternating layers of Au and poly(methyl methacrylate) (PMMA) and PMMA grating nanostructure containing quantum dots (QDs). The QDs serve as a scattering gain medium performing a random laser action, and the grating nanostructure enhances the extraction of light from QDs. The GCHMM enhances laser action by 13 times, reduces lasing threshold by 46%, and increases differential quantum efficiency by 1.8 times as compared to a planar collageable HMM. In addition, the GCHMM can be retransferred multiple times to other substrates as well as provide sufficient protection in water and still retain an excellent performance. It also shows stable functionality even when transferred to a dental floss. The GCHMM, therefore, promises to become a versatile platform for foldable, adaptable, free-standing, and water-resistant optoelectronic device applications.
Collapse
Affiliation(s)
- Hung-I Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiang-Yao Tan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ming Liao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Kun-Ching Shen
- Advanced Remanufacturing and Technology Centre, The Agency for Science, Technology and Research, 637143 Singapore
| | - Mikhail Y Shalaginov
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Monika Kataria
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ting Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jun-Wei Chang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yang-Fang Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Centre for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Ge K, Shi X, Xu Z, Libin C, Guo D, Li S, Zhai T. Full-color WGM lasing in nested microcavities. NANOSCALE 2021; 13:10792-10797. [PMID: 34105569 DOI: 10.1039/d1nr01052b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A full-color whispering-gallery mode (WGM) laser has been fabricated by partitioning different light-emitting polymers in a nested microcavity. Red-green-blue WGM lasing with a high quality factor above 104 and a narrow linewidth of 0.025 nm emits from nested capillaries when excited with a nanosecond laser. The full-color WGM lasing shows a low excitation threshold for the nested microcavities, which can avoid fluorescence resonant energy transfer. We also achieve wavelength tunable lasing upon altering the different polymers in the nested microcavities. The work demonstrates a simple method to fabricate a full-color WGM laser and its potential applications in compact lighting devices and white laser sources.
Collapse
Affiliation(s)
- Kun Ge
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoyu Shi
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Zhiyang Xu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Cui Libin
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Dan Guo
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Songtao Li
- Department of Mathematics & Physics, North China Electric Power University, Hebei 071000, China
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
13
|
Rashidi M, Haggren T, Su Z, Jagadish C, Mokkapati S, Tan HH. Managing Resonant and Nonresonant Lasing Modes in GaAs Nanowire Random Lasers. NANO LETTERS 2021; 21:3901-3907. [PMID: 33900783 DOI: 10.1021/acs.nanolett.1c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Random lasers are promising, easy-to-fabricate light sources that rely on scattering instead of well-defined optical cavities. We demonstrate random lasing in GaAs nanowires using both randomly oriented and vertically aligned arrays. These configurations are shown to lase in both resonant and nonresonant modes, where aligned nanowires support predominantly resonant lasing and randomly oriented favors nonresonant lasing. On the basis of numerical simulations, aligning the nanowires increases the system's scattering efficiency leading to higher quality factor modes and thus favoring the resonant modes. We further demonstrate two methods to optically suppress resonant mode lasing by increasing the number of excited modes. The light output-light input curves show a pronounced kink for the resonant lasing mode while the nonresonant mode is kink-free. The resonant lasing modes may be used as tunable lasers, and the nonresonant modes exhibit near-thresholdless amplification. Switching between lasing modes opens up new opportunities to use lasers in broader applications.
Collapse
Affiliation(s)
- Mohammad Rashidi
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Tuomas Haggren
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Zhicheng Su
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chennupati Jagadish
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sudha Mokkapati
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Hark H Tan
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
14
|
Lee K, Ma HJ, Rotermund F, Kim DK, Park Y. Non-resonant power-efficient directional Nd:YAG ceramic laser using a scattering cavity. Nat Commun 2021; 12:8. [PMID: 33397891 PMCID: PMC7782720 DOI: 10.1038/s41467-020-20114-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023] Open
Abstract
Non-resonant lasers exhibit the potential for stable and consistent narrowband light sources. Furthermore, non-resonant lasers do not require well-defined optics, and thus has considerably diversified the available types of laser gain materials including powders, films, and turbid ceramics. Despite these intrinsic advantages, the practical applications of non-resonant lasers have been limited so far, mainly because of their low power efficiency and omnidirectional emission. To overcome these limitations, here we propose a light trap design for non-resonant lasers based on a spherical scattering cavity with a small entrance. Using a porous Nd3+:YAG ceramic, directional laser emission could be observed with significant enhancements in the slope efficiency and linewidth (down to 32 pm). A theoretical model is also developed to describe and predict the operation characteristics of proposed non-resonant laser.
Collapse
Affiliation(s)
- KyeoReh Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Ho Jin Ma
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Fabian Rotermund
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Do Kyung Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
15
|
Tong J, Shi X, Niu L, Zhang X, Chen C, Han L, Zhang S, Zhai T. Dual-color plasmonic random lasers for speckle-free imaging. NANOTECHNOLOGY 2020; 31:465204. [PMID: 32845872 DOI: 10.1088/1361-6528/abaadc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A dual-color plasmonic random laser under single-excitation is achieved in an ultrathin membrane doped with binary quantum dots and gold nanorods. The gold nanorods tune the luminescence lifetime and emission efficiency of quantum dots. Under single excitation, low-threshold random lasing is observed. Green random lasing at 547 nm is 'turned on' and red random lasing at 630 nm is greatly enhanced by the transversal and longitudinal surface plasmon resonance of the gold nanorods, respectively. Speckle-free color imaging is achieved by using the proposed dual-color random laser source. These properties would facilitate the development of random lasers in fields of illumination and imaging.
Collapse
Affiliation(s)
- Junhua Tong
- Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, Beijing 100124, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bera KP, Kamal S, Inamdar AI, Sainbileg B, Lin HI, Liao YM, Ghosh R, Chang TJ, Lee YG, Cheng-Fu H, Hsu YT, Hayashi M, Hung CH, Luo TT, Lu KL, Chen YF. Intrinsic Ultralow-Threshold Laser Action from Rationally Molecular Design of Metal-Organic Framework Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36485-36495. [PMID: 32678568 DOI: 10.1021/acsami.0c07890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are superior for multiple applications including drug delivery, sensing, and gas storage because of their tunable physiochemical properties and fascinating architectures. Optoelectronic application of MOFs is difficult because of their porous geometry and conductivity issues. Recently, a few optoelectronic devices have been fabricated by a suitable design of integrating MOFs with other materials. However, demonstration of laser action arising from MOFs as intrinsic gain media still remains challenging, even though some studies endeavor on encapsulating luminescence organic laser dyes into the porous skeleton of MOFs to achieve laser action. Unfortunately, the aggregation of such unstable laser dyes causes photoluminescence quenching and energy loss, which limits their practical application. In this research, unprecedently, we demonstrated ultralow-threshold (∼13 nJ/cm2) MOF laser action by a judicious choice of metal nodes and organic linkers during synthesis of MOFs. Importantly, we also demonstrated that the white random lasing from the beautiful microflowers of organic linkers possesses a porous network, which is utilized to synthesize the MOFs. The highly luminescent broad-band organic linker 1,4-NDC, which itself exhibits a strong white random laser, is used not only to achieve the stimulated emission in MOFs but also to reduce the lasing threshold. Such white lasing has multiple applications from bioimaging to the recently developed versatile Li-Fi technology. In addition, we showed that the smooth facets of MOF microcrystals can show Fabry-Perot resonant cavities having a high quality factor of ∼103 with excellent photostability. Our unique discovery of stable, nontoxic, high-performance MOF laser action will open up a new route for the development of new optoelectronic devices.
Collapse
Affiliation(s)
- Krishna Prasad Bera
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano-Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Saqib Kamal
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Molecular-Science and Technology Program,Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Arif I Inamdar
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan and Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Batjargal Sainbileg
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Hung-I Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ming Liao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano-Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Rapti Ghosh
- Molecular-Science and Technology Program,Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Jia Chang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Guang Lee
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Hou Cheng-Fu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano-Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Yun-Tzu Hsu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Michitoshi Hayashi
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | | | - Tzuoo-Tsair Luo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yang-Fang Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Kataria M, Yadav K, Nain A, Lin HI, Hu HW, Paul Inbaraj CR, Chang TJ, Liao YM, Cheng HY, Lin KH, Chang HT, Tseng FG, Wang WH, Chen YF. Self-Sufficient and Highly Efficient Gold Sandwich Upconversion Nanocomposite Lasers for Stretchable and Bio-applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19840-19854. [PMID: 32270675 DOI: 10.1021/acsami.0c02602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multifunctional lanthanide-doped upconversion nanoparticles (UCNPs) have spread their wings in the fields of flexible optoelectronics and biomedical applications. One of the ongoing challenges lies in achieving UCNP-based nanocomposites, which enable a continuous-wave (CW) laser action at ultralow thresholds. Here, gold sandwich UCNP nanocomposites [gold (Au1)-UCNP-gold (Au2)] capable of exhibiting lasing at ultralow thresholds under CW excitation are demonstrated. The metastable energy-level characteristics of lanthanides are advantageous for creating population inversion. In particular, localized surface plasmon resonance-based electromagnetic hotspots in the nanocomposites and the huge enhancement of scattering coefficient for the formation of coherent closed loops due to multiple scattering facilitate the process of stimulated emissions as confirmed by theoretical simulations. The nanocomposites are subjected to stretchable systems for enhancing the lasing action (threshold ∼ 0.06 kW cm-2) via a light-trapping effect. The applications in bioimaging of HeLa cells and antibacterial activity (photothermal therapy) are demonstrated using the newly designed Au1-UCNP-Au2 nanocomposites.
Collapse
Affiliation(s)
- Monika Kataria
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Physics, National Central University, Chung-Li 320, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Kanchan Yadav
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Nanoscience and Nanotechnology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei 106, Taiwan
| | - Amit Nain
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Nanoscience and Nanotechnology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei 106, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hung-I Lin
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Han-Wen Hu
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Christy Roshini Paul Inbaraj
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
- Nanoscience and Nanotechnology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei 106, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ting-Jia Chang
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Ming Liao
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Hao-Yu Cheng
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Kung-Hsuan Lin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan City 32023, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan
- Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Wei-Hua Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yang-Fang Chen
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
- Advanced Research Centre for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Chen X, Sun T, Wang F. Lanthanide-Based Luminescent Materials for Waveguide and Lasing. Chem Asian J 2019; 15:21-33. [PMID: 31746524 DOI: 10.1002/asia.201901447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Indexed: 11/10/2022]
Abstract
Microlasers and waveguides have wide applications in the fields of photonics and optoelectronics. Lanthanide-doped luminescent materials featuring large Stokes/anti-Stokes shift, long excited-state lifetime as well as sharp emission bandwidth are excellent optical components for photonic applications. In the past few years, great progress has been made in the design and fabrication of lanthanide-based waveguides and lasers at the micrometer length scale. Waveguide structures and microcavities can be fabricated from lanthanide-doped amorphous materials through top-down process. Alternatively, lanthanide-doped organic compounds featuring large absorption cross-section can self-assemble into low-dimensional structures of well-defined size and morphology. In recent years, lanthanide-doped crystalline structures displaying highly tunable excitation and emission properties have emerged as promising waveguide and lasing materials, which substantially extends the range of lasing wavelength. In this minireview, we discuss recent advances in lanthanide-based luminescent materials that are designed for waveguide and lasing applications. We also attempt to highlight challenging problems of these materials that obstacle further development of this field.
Collapse
Affiliation(s)
- Xian Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianying Sun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
19
|
Fernandez-Bravo A, Wang D, Barnard ES, Teitelboim A, Tajon C, Guan J, Schatz GC, Cohen BE, Chan EM, Schuck PJ, Odom TW. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. NATURE MATERIALS 2019; 18:1172-1176. [PMID: 31548631 DOI: 10.1038/s41563-019-0482-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/13/2019] [Indexed: 05/06/2023]
Abstract
Miniaturized lasers are an emerging platform for generating coherent light for quantum photonics, in vivo cellular imaging, solid-state lighting and fast three-dimensional sensing in smartphones1-3. Continuous-wave lasing at room temperature is critical for integration with opto-electronic devices and optimal modulation of optical interactions4,5. Plasmonic nanocavities integrated with gain can generate coherent light at subwavelength scales6-9, beyond the diffraction limit that constrains mode volumes in dielectric cavities such as semiconducting nanowires10,11. However, insufficient gain with respect to losses and thermal instabilities in nanocavities has limited all nanoscale lasers to pulsed pump sources and/or low-temperature operation6-9,12-15. Here, we show continuous-wave upconverting lasing at room temperature with record-low thresholds and high photostability from subwavelength plasmons. We achieve selective, single-mode lasing from Yb3+/Er3+-co-doped upconverting nanoparticles conformally coated on Ag nanopillar arrays that support a single, sharp lattice plasmon cavity mode and greater than wavelength λ/20 field confinement in the vertical dimension. The intense electromagnetic near-fields localized in the vicinity of the nanopillars result in a threshold of 70 W cm-2, orders of magnitude lower than other small lasers. Our plasmon-nanoarray upconverting lasers provide directional, ultra-stable output at visible frequencies under near-infrared pumping, even after six hours of constant operation, which offers prospects in previously unrealizable applications of coherent nanoscale light.
Collapse
Affiliation(s)
| | - Danqing Wang
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA
| | - Edward S Barnard
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ayelet Teitelboim
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl Tajon
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Trilo Therapeutics, San Francisco, CA, USA
| | - Jun Guan
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA
| | - George C Schatz
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - P James Schuck
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| | - Teri W Odom
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
20
|
Huang D, Xie Y, Lu D, Wang Z, Wang J, Yu H, Zhang H. Demonstration of a White Laser with V 2 C MXene-Based Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901117. [PMID: 31034110 DOI: 10.1002/adma.201901117] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/07/2019] [Indexed: 05/21/2023]
Abstract
Multicolor photoluminescence over the full visible color spectrum is critical in many modern science and techniques, such as full-color lighting, displays, biological and chemical monitoring, multiband communication, etc., but the ultimate white lasing especially on the nanoscale is still a challenge due to its exacting requirements in the balance of the gain and optical feedback at different wavelengths. Recently, 2D transition metal carbides (MXenes) have emerged, with some superior chemical, physical, and environmental properties distinguishing them from traditional 2D materials. Here, a white laser with V2 C MXene quantum dots (MQDs) is originally demonstrated by constructing a broadband nonlinear random scattering system with enhanced gain. The excitation-dependent photoluminescence of V2 C MQDs is enhanced by passivation and characterized, and their localized nonlinear random scattering is realized by the generation of excitation-power-dependent solvent bubbles. With the optimized excitation, the blue, green, yellow, and red light is amplified and simultaneously lased. This work not only provides a kind of promising material for white lasers, but also a design strategy of novel photonics for further applications.
Collapse
Affiliation(s)
- Dapeng Huang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Xie
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Dazhi Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jiyang Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Haohai Yu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Huaijin Zhang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
21
|
Lin HI, Yadav K, Shen KC, Haider G, Roy PK, Kataria M, Chang TJ, Li YH, Lin TY, Chen YT, Chen YF. Nanoscale Core-Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1163-1173. [PMID: 30543414 DOI: 10.1021/acsami.8b13844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmonic material has emerged with multifunctionalities for its remarkable tailoring light emission, reshaping density of states (DOS), and focusing subwavelength light. However, restricted by its propagation loss and narrowband resonance in nature, it is a challenge for plasmonic material to provide a broadband DOS to advance its application. Here, we develop a novel nanoscale core-shell hyperbolic structure that possesses a remarkable coupling effect inside the multishell nanoscale composite owing to a higher DOS and a longer time of collective oscillations of the electrons than the plasmonic-based pure-metal nanoparticles. Subsequently, a giant localized electromagnetic wave of surface plasmon resonance is formed at the surface, causing pronounced out-coupling effect. Specifically, the nanoscale core-shell hyperbolic structure confines the energy well without being decayed, reducing the propagation loss and then achieving an unprecedented stimulated emission (random lasing action by dye molecule) with a record ultralow threshold (∼30 μJ/cm2). Besides, owing to the radial symmetry of the nanoscale core-shell hyperbolic structure, the excitation of high wavevector modes and induced additional DOS are easily accessible. We believe that the nanoscale core-shell hyperbolic structure paves a way to enlarge the development of plasmonic-based applications, such as high optoelectronic conversion efficiency of solar cells, great power extraction of light-emitting diodes, wide spectra photodetectors, carrying the emitter inside the core part as quantitative fluorescence microscopy and bioluminescence imaging system for in vivo and in vitro research on human body.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tai-Yuan Lin
- Institute of Optoelectronic Sciences , National Taiwan Ocean University , Keelung 202 , Taiwan
| | | | | |
Collapse
|
22
|
Gao R, Sun L, Li L, Pan T, Fu L, Ai XC, Zhang JP. A facile aqueous synthesis strategy for hexagonal phase NaGdF 4 nanorods. NEW J CHEM 2019. [DOI: 10.1039/c9nj01226e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A facile aqueous synthesis method is explored to synthesize hydrophilic β-NaGdF4 nanorods at 60 °C.
Collapse
Affiliation(s)
- Rongyao Gao
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Liyuan Sun
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Luoyuan Li
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Tingting Pan
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Limin Fu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Xi-Cheng Ai
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Jian-Ping Zhang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|