1
|
Maia RF, Vaziri AS, Shahbazi MA, Santos HA. Artificial cells and biomimicry cells: A rising star in the fight against cancer. Mater Today Bio 2025; 32:101723. [PMID: 40242485 PMCID: PMC12000744 DOI: 10.1016/j.mtbio.2025.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Biomimetic Artificial Cells (ACs) are engineered systems that mimic the properties and functions of natural cells, offering significant potential for biomedical applications. The performance and applicability of these synthetic constructs depend on the choice of materials and fabrication methods. Our review delves into the materials, fabrication techniques, and diverse applications of ACs, emphasizing their transformative impact on the field of cancer therapy as smart vehicles for drug delivery, immune system stimulation, cancer cell targeting to minimize off-target effects and maximizing therapeutic efficacy as well as in vitro models for cancer research. By providing a comprehensive overview, we aim to elucidate how these synthetic cells can move the field forward, offering innovative solutions to longstanding challenges in cancer treatment and opening new frontiers in less toxic treatment options.
Collapse
Affiliation(s)
- Renata Faria Maia
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), The University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| | - Asma Sadat Vaziri
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), The University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), The University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), The University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| |
Collapse
|
2
|
Li L, Yao X, Li G, Guo Q, Yue J, Liu W, Fang Y, Midgley A, Zhao M, Nishinari K. Recent progress of artificial cells in structure design, functionality and the prospects in food biotechnology. Mater Today Bio 2025; 31:101565. [PMID: 40026621 PMCID: PMC11869102 DOI: 10.1016/j.mtbio.2025.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Artificial cells have bridged the gap between non-living systems and biological cells. In recent years, artificial cells designed to simulate cellular structure and function have garnered significant attention. These artificial cells demonstrate vast potential for advancements in various biomedical areas, including simulating cell structure and function, creating innovative biosensors, facilitating bioactives transport, enabling micro and nanoreactors, and improving the targeted therapy for chronic foodborne diseases. In the interdisciplinary field of artificial cell construction, based on their constituent components, these systems can be categorized into lipid/polymer vesicles, coacervate, colloidosome, and metal-organic framework (MOF) artificial cells. They are anticipated to significantly enhance advancements in food science, particularly in cellular structure optimization, precise nutrition delivery, targeted nutrient release, and rapid detection methods. Consequently, this paper will comprehensively cover the historical background, fabrication techniques, and structural characteristics of artificial cells. From a functional design perspective, this review examines the growth and division mechanisms, energy production processes, encapsulation and reaction vessels, carriers, and information exchange systems of artificial cells. Ultimately, it provides a comprehensive evaluation of the safety of artificial cells from both biological and environmental viewpoints, to introduce and expand the application scenarios of this innovative biotechnology in food science.
Collapse
Affiliation(s)
- Li Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Qianqian Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Juan Yue
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Wenguang Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Adam Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068, China
| |
Collapse
|
3
|
Gompper G, Stone HA, Kurzthaler C, Saintillan D, Peruani F, Fedosov DA, Auth T, Cottin-Bizonne C, Ybert C, Clément E, Darnige T, Lindner A, Goldstein RE, Liebchen B, Binysh J, Souslov A, Isa L, di Leonardo R, Frangipane G, Gu H, Nelson BJ, Brauns F, Marchetti MC, Cichos F, Heuthe VL, Bechinger C, Korman A, Feinerman O, Cavagna A, Giardina I, Jeckel H, Drescher K. The 2025 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:143501. [PMID: 39837091 PMCID: PMC11836640 DOI: 10.1088/1361-648x/adac98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials. A major challenge for understanding and designing active matter is their inherent non-equilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Furthermore, interactions in ensembles of active agents are often non-additive and non-reciprocal. An important aspect of biological agents is their ability to sense the environment, process this information, and adjust their motion accordingly. It is an important goal for the engineering of micro-robotic systems to achieve similar functionality. Many fundamental properties of motile active matter are by now reasonably well understood and under control. Thus, the ground is now prepared for the study of physical aspects and mechanisms of motion in complex environments, the behavior of systems with new physical features like chirality, the development of novel micromachines and microbots, the emergent collective behavior and swarming of intelligent self-propelled particles, and particular features of microbial systems. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter poses major challenges, which can only be addressed by a truly interdisciplinary effort involving scientists from biology, chemistry, ecology, engineering, mathematics, and physics. The 2025 motile active matter roadmap of Journal of Physics: Condensed Matter reviews the current state of the art of the field and provides guidance for further progress in this fascinating research area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America
| | - Christina Kurzthaler
- Max Planck Institute for the Physics of Complex Systems, Center for Systems Biology Dresden, Cluster of Excellence, Physics of Life, TU Dresden, Dresden, Germany
| | - David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, United States of America
| | | | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Thorsten Auth
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Cecile Cottin-Bizonne
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Christophe Ybert
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Eric Clément
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Thierry Darnige
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Anke Lindner
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Benno Liebchen
- Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Jack Binysh
- Institute of Physics, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Anton Souslov
- T.C.M. Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | - Hongri Gu
- Department of Physics, University of Konstanz, Konstanz, Germany
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| | - Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - Frank Cichos
- Molecular Nanophotonics, Leipzig University, 04013 Leipzig, Germany
| | | | | | - Amos Korman
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Ofer Feinerman
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Cavagna
- Istituto Sistemi Complessi (ISC-CNR), Rome, Italy
- Dipartimento di Fisica, Sapienza Università di Roma & INFN, Unità di Roma 1, Rome, Italy
| | - Irene Giardina
- Istituto Sistemi Complessi (ISC-CNR), Rome, Italy
- Dipartimento di Fisica, Sapienza Università di Roma & INFN, Unità di Roma 1, Rome, Italy
| | - Hannah Jeckel
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - Knut Drescher
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Akenuwa OH, Abel SM. Polarity sorting of actin filaments by motor-driven cargo transport. Biophys J 2025; 124:704-716. [PMID: 39827370 PMCID: PMC11900188 DOI: 10.1016/j.bpj.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
During the active transport of cellular cargo, forces generated by cargo-associated molecular motors propel the cargo along cytoskeletal tracks. However, the forces impact not only the cargo, but also the underlying cytoskeletal filaments. To better understand the interplay between cargo transport and the organization of cytoskeletal filaments, we employ coarse-grained computer simulations to study actin filaments interacting with cargo-anchored myosin motors in a confined domain. We show that cargo transport can lead to the segregation of filaments into domains of preferred filament polarity separated by clusters of aggregated cargoes. The formation of polarity-sorted filament domains is enhanced by larger numbers of cargoes, more motors per cargo, and longer filaments. Analysis of individual trajectories reveals dynamic and heterogeneous behavior, including locally stable aggregates of cargoes that undergo rapid coalescence into larger clusters when sufficiently close. Our results provide insight into the impact of motor-driven organelle transport on actin filaments, which is relevant both in cells and in synthetic environments.
Collapse
Affiliation(s)
- Oghosa H Akenuwa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
5
|
Belluati A, Bloch A, Koynov K, Müller Nieva M, Bagherabadi M, Andrieu-Brunsen A, Kolmar H, Bruns N. Characterization and Optimization of Vesicle Properties in bioPISA: from Size Distribution to Post-Assembly Loading. Adv Biol (Weinh) 2024:e2400483. [PMID: 39692631 DOI: 10.1002/adbi.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/10/2024] [Indexed: 12/19/2024]
Abstract
This study investigates the formation and properties of vesicles produced via biocatalytic Polymerization-Induced Self-Assembly (bioPISA) as artificial cells. Methods for achieving size uniformity, including gentle centrifugation and sucrose gradient centrifugation, are explored, and the effects of stirring speed on vesicle morphology is investigated. The internal structure of the vesicles, characterized by a polymer-rich matrix, is analyzed using fluorescence correlation spectroscopy (FCS). Additionally, the feasibility of loading macromolecules into pre-formed vesicles is demonstrated using electroporation, and a fluorescent protein as well as enzymes for a cascade reaction were sucesfully incorporated into the fully assembled polymersomes. These findings provide a foundation for developing enzyme-synthesized polymeric vesicles with controlled morphologies for various applications, e.g., in synthetic biology.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgo, G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Adrian Bloch
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mariana Müller Nieva
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Mohadeseh Bagherabadi
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Annette Andrieu-Brunsen
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Harald Kolmar
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgo, G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
6
|
Dong D, Zhan J, Liao G, Zhu T, Yu Q, Zhang W, Wang L. Microfluidics-Assisted Polymer Vesicle Budding in Emulsion Systems: A Promising Approach for the Preparation and Application of Polymer Vesicles. Molecules 2024; 29:4802. [PMID: 39459171 PMCID: PMC11510250 DOI: 10.3390/molecules29204802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The challenge of producing polymer vesicles remains difficult, despite numerous attempts to modulate the kinetics of polymer vesicle budding and achieve precise control over the membrane characteristics. An innovative approach that incorporates the use of copolymer-loaded single-emulsion droplets is proposed to address this challenge. This method enables the precise manipulation of micelles and polymer vesicles' composition, structures and dimensions. The emulsion contracts and forms microspheres when the copolymer concentrations exceed > 0.5 wt%, resulting in the formation of nano polymer vesicles. Conversely, the copolymer spontaneously forms micro polymer vesicles and micelles through vesicle budding at lower concentrations. The spontaneous production of vesicles and micelles can be induced by modifying the copolymer concentration in the emulsion. Our discoveries have a significant impact relative to the development of copolymer membranes and contribute to an enhanced comprehension of the mass manufacturing of polymer vesicles from single emulsions.
Collapse
Affiliation(s)
| | | | | | | | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China; (D.D.); (J.Z.); (G.L.); (T.Z.)
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China; (D.D.); (J.Z.); (G.L.); (T.Z.)
| | - Linge Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China; (D.D.); (J.Z.); (G.L.); (T.Z.)
| |
Collapse
|
7
|
Rothschild LJ, Averesch NJH, Strychalski EA, Moser F, Glass JI, Cruz Perez R, Yekinni IO, Rothschild-Mancinelli B, Roberts Kingman GA, Wu F, Waeterschoot J, Ioannou IA, Jewett MC, Liu AP, Noireaux V, Sorenson C, Adamala KP. Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities. ACS Synth Biol 2024; 13:974-997. [PMID: 38530077 PMCID: PMC11037263 DOI: 10.1021/acssynbio.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.
Collapse
Affiliation(s)
- Lynn J. Rothschild
- Space Science
& Astrobiology Division, NASA Ames Research
Center, Moffett
Field, California 94035-1000, United States
- Department
of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Nils J. H. Averesch
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Felix Moser
- Synlife, One Kendall Square, Cambridge, Massachusetts 02139-1661, United States
| | - John I. Glass
- J.
Craig
Venter Institute, La Jolla, California 92037, United States
| | - Rolando Cruz Perez
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Blue
Marble
Space Institute of Science at NASA Ames Research Center, Moffett Field, California 94035-1000, United
States
| | - Ibrahim O. Yekinni
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brooke Rothschild-Mancinelli
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0150, United States
| | | | - Feilun Wu
- J. Craig
Venter Institute, Rockville, Maryland 20850, United States
| | - Jorik Waeterschoot
- Mechatronics,
Biostatistics and Sensors (MeBioS), KU Leuven, 3000 Leuven Belgium
| | - Ion A. Ioannou
- Department
of Chemistry, MSRH, Imperial College London, London W12 0BZ, U.K.
| | - Michael C. Jewett
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Allen P. Liu
- Mechanical
Engineering & Biomedical Engineering, Cellular and Molecular Biology,
Biophysics, Applied Physics, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent Noireaux
- Physics
and Nanotechnology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlise Sorenson
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Zizzari A, Arima V. Glass Microdroplet Generator for Lipid-Based Double Emulsion Production. MICROMACHINES 2024; 15:500. [PMID: 38675311 PMCID: PMC11052113 DOI: 10.3390/mi15040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Microfluidics offers a highly controlled and reproducible route to synthesize lipid vesicles. In recent years, several microfluidic approaches have been introduced for this purpose, but double emulsions, such as Water-in-Oil-in-Water (W/O/W) droplets, are preferable to produce giant vesicles that are able to maximize material encapsulation. Flow focusing (FF) is a technique used to generate double emulsion droplets with high monodispersity, a controllable size, and good robustness. Many researchers use polydimethylsiloxane as a substrate material to fabricate microdroplet generators, but it has some limitations due to its hydrophobicity, incompatibility with organic solvents, and the molecular adsorption on the microchannel walls. Thus, specific surface modification and functionalization steps, which are uncomfortable to perform in closed microchannels, are required to overcome these shortcomings. Here, we propose glass as a material to produce a chip with a six-inlet junction geometry. The peculiar geometry and the glass physicochemical properties allow for W/O/W droplet formation without introducing microchannel wall functionalization and using a variety of reagents and organic solvents. The robust glass chip can be easily cleaned and used repeatedly, bringing advantages in terms of cost and reproducibility in emulsion preparation.
Collapse
Affiliation(s)
- Alessandra Zizzari
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy;
| | | |
Collapse
|
9
|
Fasciano S, Wang S. Recent advances of droplet-based microfluidics for engineering artificial cells. SLAS Technol 2024; 29:100090. [PMID: 37245659 DOI: 10.1016/j.slast.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Artificial cells, synthetic cells, or minimal cells are microengineered cell-like structures that mimic the biological functions of cells. Artificial cells are typically biological or polymeric membranes where biologically active components, including proteins, genes, and enzymes, are encapsulated. The goal of engineering artificial cells is to build a living cell with the least amount of parts and complexity. Artificial cells hold great potential for several applications, including membrane protein interactions, gene expression, biomaterials, and drug development. It is critical to generate robust, stable artificial cells using high throughput, easy-to-control, and flexible techniques. Recently, droplet-based microfluidic techniques have shown great potential for the synthesis of vesicles and artificial cells. Here, we summarized the recent advances in droplet-based microfluidic techniques for the fabrication of vesicles and artificial cells. We first reviewed the different types of droplet-based microfluidic devices, including flow-focusing, T-junction, and coflowing. Next, we discussed the formation of multi-compartmental vesicles and artificial cells based on droplet-based microfluidics. The applications of artificial cells for studying gene expression dynamics, artificial cell-cell communications, and mechanobiology are highlighted and discussed. Finally, the current challenges and future outlook of droplet-based microfluidic methods for engineering artificial cells are discussed. This review will provide insights into scientific research in synthetic biology, microfluidic devices, membrane interactions, and mechanobiology.
Collapse
Affiliation(s)
- Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, USA.
| |
Collapse
|
10
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
11
|
Krok E, Stephan M, Dimova R, Piatkowski L. Tunable biomimetic bacterial membranes from binary and ternary lipid mixtures and their application in antimicrobial testing. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184194. [PMID: 37328023 DOI: 10.1016/j.bbamem.2023.184194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
The reconstruction of accurate yet simplified mimetic models of cell membranes is a very challenging goal of synthetic biology. To date, most of the research focuses on the development of eukaryotic cell membranes, while reconstitution of their prokaryotic counterparts has not been fully addressed, and the proposed models do not reflect well the complexity of bacterial cell envelopes. Here, we describe the reconstitution of biomimetic bacterial membranes with an increasing level of complexity, developed from binary and ternary lipid mixtures. Giant unilamellar vesicles composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE); PC and phosphatidylglycerol (PG); PE and PG; PE, PG and cardiolipin (CA) at varying molar ratios were successfully prepared by the electroformation method. Each of the proposed mimetic models focuses on reproducing specific membrane features such as membrane charge, curvature, leaflets asymmetry, or the presence of phase separation. GUVs were characterized in terms of size distribution, surface charge, and lateral organization. Finally, the developed models were tested against the lipopeptide antibiotic daptomycin. The obtained results showed a clear dependency of daptomycin binding efficiency on the amount of negatively charged lipid species present in the membrane. We anticipate that the models proposed here can be applied not only in antimicrobial testing but also serve as platforms for studying fundamental biological processes in bacteria as well as their interaction with physiologically relevant biomolecules.
Collapse
Affiliation(s)
- Emilia Krok
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland; Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Mareike Stephan
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Lukasz Piatkowski
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland
| |
Collapse
|
12
|
Fumadó Navarro J, Lomora M. Mechanoresponsive Drug Delivery Systems for Vascular Diseases. Macromol Biosci 2023; 23:e2200466. [PMID: 36670512 DOI: 10.1002/mabi.202200466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Mechanoresponsive drug delivery systems (DDS) have emerged as promising candidates to improve the current effectiveness and lower the side effects typically associated with direct drug administration in the context of vascular diseases. Despite tremendous research efforts to date, designing drug delivery systems able to respond to mechanical stimuli to potentially treat these diseases is still in its infancy. By understanding relevant biological forces emerging in healthy and pathological vascular endothelium, it is believed that better-informed design strategies can be deduced for the fabrication of simple-to-complex macromolecular assemblies capable of sensing mechanical forces. These responsive systems are discussed through insights into essential parameter design (composition, size, shape, and aggregation state) , as well as their functionalization with (macro)molecules that are intrinsically mechanoresponsive (e.g., mechanosensitive ion channels and mechanophores). Mechanical forces, including the pathological shear stress and exogenous stimuli (e.g., ultrasound, magnetic fields), used for the activation of mechanoresponsive DDS are also introduced, followed by in vitro and in vivo experimental models used to investigate and validate such novel therapies. Overall, this review aims to propose a fresh perspective through identified challenges and proposed solutions that could be of benefit for the further development of this exciting field.
Collapse
Affiliation(s)
- Josep Fumadó Navarro
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| | - Mihai Lomora
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| |
Collapse
|
13
|
Harrison K, Mackay AS, Kambanis L, Maxwell JWC, Payne RJ. Synthesis and applications of mirror-image proteins. Nat Rev Chem 2023; 7:383-404. [PMID: 37173596 DOI: 10.1038/s41570-023-00493-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/15/2023]
Abstract
The homochirality of biomolecules in nature, such as DNA, RNA, peptides and proteins, has played a critical role in establishing and sustaining life on Earth. This chiral bias has also given synthetic chemists the opportunity to generate molecules with inverted chirality, unlocking valuable new properties and applications. Advances in the field of chemical protein synthesis have underpinned the generation of numerous 'mirror-image' proteins (those comprised entirely of D-amino acids instead of canonical L-amino acids), which cannot be accessed using recombinant expression technologies. This Review seeks to highlight recent work on synthetic mirror-image proteins, with a focus on modern synthetic strategies that have been leveraged to access these complex biomolecules as well as their applications in protein crystallography, drug discovery and the creation of mirror-image life.
Collapse
Affiliation(s)
- Katriona Harrison
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Lucas Kambanis
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Fracassi A, Podolsky KA, Pandey S, Xu C, Hutchings J, Seifert S, Baiz CR, Sinha SK, Devaraj NK. Characterizing the Self-Assembly Properties of Monoolein Lipid Isosteres. J Phys Chem B 2023; 127:1771-1779. [PMID: 36795462 PMCID: PMC9986874 DOI: 10.1021/acs.jpcb.2c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Living cells feature lipid compartments which exhibit a variety of shapes and structures that assist essential cellular processes. Many natural cell compartments frequently adopt convoluted nonlamellar lipid architectures that facilitate specific biological reactions. Improved methods for controlling the structural organization of artificial model membranes would facilitate investigations into how membrane morphology affects biological functions. Monoolein (MO) is a single-chain amphiphile which forms nonlamellar lipid phases in aqueous solution and has wide applications in nanomaterial development, the food industry, drug delivery, and protein crystallization. However, even if MO has been extensively studied, simple isosteres of MO, while readily accessible, have seen limited characterization. An improved understanding of how relatively minor changes in lipid chemical structure affect self-assembly and membrane topology could instruct the construction of artificial cells and organelles for modeling biological structures and facilitate nanomaterial-based applications. Here, we investigate the differences in self-assembly and large-scale organization between MO and two MO lipid isosteres. We show that replacing the ester linkage between the hydrophilic headgroup and hydrophobic hydrocarbon chain with a thioesther or amide functional group results in the assembly of lipid structures with different phases not resembling those formed by MO. Using light and cryo-electron microscopy, small-angle X-ray scattering, and infrared spectroscopy, we demonstrate differences in the molecular ordering and large-scale architectures of the self-assembled structures made from MO and its isosteric analogues. These results improve our understanding of the molecular underpinnings of lipid mesophase assembly and may facilitate the development of MO-based materials for biomedicine and as model lipid compartments.
Collapse
Affiliation(s)
- Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California92093, United States
| | - Kira A Podolsky
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California92093, United States
| | - Sudip Pandey
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mayer Hall Addition 4561, La Jolla, California92093, United States
| | - Cong Xu
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, Austin, Texas78712-1224, United States
| | - Joshua Hutchings
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California92093, United States
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, Austin, Texas78712-1224, United States
| | - Sunil K Sinha
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mayer Hall Addition 4561, La Jolla, California92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California92093, United States
| |
Collapse
|
15
|
Xu KJ, Xu G. Resolving hidden pixels beyond the resolution limit of projection imaging by square aperture. Sci Rep 2023; 13:3449. [PMID: 36859466 PMCID: PMC9977726 DOI: 10.1038/s41598-023-30516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Projection imaging has been employed widely in many areas, such as x-ray radiography, due to its penetration power and ballistic geometry of their paths. However, its resolution limit remains a major challenge, caused by the conflict of source intensity and source size associated with image blurriness. A simple yet robust scheme has been proposed here to solve the problem. An unconventional square aperture, rather than the usual circular beam, is constructed, which allows for the straightforward deciphering of a blurred spot, to unravel hundreds originally hidden pixels. With numerical verification and experimental demonstration, our proposal is expected to benefit multiple disciplines, not limited to x-ray imaging.
Collapse
Affiliation(s)
- Kelvin J Xu
- Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, 10027, USA
| | - Gu Xu
- Materials Science and Engineering, McMaster University, Hamilton, ON, L8S4L7, Canada.
| |
Collapse
|
16
|
Baldauf L, Frey F, Arribas Perez M, Idema T, Koenderink GH. Branched actin cortices reconstituted in vesicles sense membrane curvature. Biophys J 2023:S0006-3495(23)00124-8. [PMID: 36806830 DOI: 10.1016/j.bpj.2023.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The actin cortex is a complex cytoskeletal machinery that drives and responds to changes in cell shape. It must generate or adapt to plasma membrane curvature to facilitate diverse functions such as cell division, migration, and phagocytosis. Due to the complex molecular makeup of the actin cortex, it remains unclear whether actin networks are inherently able to sense and generate membrane curvature, or whether they rely on their diverse binding partners to accomplish this. Here, we show that curvature sensing is an inherent capability of branched actin networks nucleated by Arp2/3 and VCA. We develop a robust method to encapsulate actin inside giant unilamellar vesicles (GUVs) and assemble an actin cortex at the inner surface of the GUV membrane. We show that actin forms a uniform and thin cortical layer when present at high concentration and distinct patches associated with negative membrane curvature at low concentration. Serendipitously, we find that the GUV production method also produces dumbbell-shaped GUVs, which we explain using mathematical modeling in terms of membrane hemifusion of nested GUVs. We find that branched actin networks preferentially assemble at the neck of the dumbbells, which possess a micrometer-range convex curvature comparable with the curvature of the actin patches found in spherical GUVs. Minimal branched actin networks can thus sense membrane curvature, which may help mammalian cells to robustly recruit actin to curved membranes to facilitate diverse cellular functions such as cytokinesis and migration.
Collapse
Affiliation(s)
- Lucia Baldauf
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Marcos Arribas Perez
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Timon Idema
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
17
|
van Buren L, Koenderink GH, Martinez-Torres C. DisGUVery: A Versatile Open-Source Software for High-Throughput Image Analysis of Giant Unilamellar Vesicles. ACS Synth Biol 2023; 12:120-135. [PMID: 36508359 PMCID: PMC9872171 DOI: 10.1021/acssynbio.2c00407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 12/14/2022]
Abstract
Giant unilamellar vesicles (GUVs) are cell-sized aqueous compartments enclosed by a phospholipid bilayer. Due to their cell-mimicking properties, GUVs have become a widespread experimental tool in synthetic biology to study membrane properties and cellular processes. In stark contrast to the experimental progress, quantitative analysis of GUV microscopy images has received much less attention. Currently, most analysis is performed either manually or with custom-made scripts, which makes analysis time-consuming and results difficult to compare across studies. To make quantitative GUV analysis accessible and fast, we present DisGUVery, an open-source, versatile software that encapsulates multiple algorithms for automated detection and analysis of GUVs in microscopy images. With a performance analysis, we demonstrate that DisGUVery's three vesicle detection modules successfully identify GUVs in images obtained with a wide range of imaging sources, in various typical GUV experiments. Multiple predefined analysis modules allow the user to extract properties such as membrane fluorescence, vesicle shape, and internal fluorescence from large populations. A new membrane segmentation algorithm facilitates spatial fluorescence analysis of nonspherical vesicles. Altogether, DisGUVery provides an accessible tool to enable high-throughput automated analysis of GUVs, and thereby to promote quantitative data analysis in synthetic cell research.
Collapse
Affiliation(s)
- Lennard van Buren
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Cristina Martinez-Torres
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| |
Collapse
|
18
|
Broeks D, Hendlin Y, Zwart H. Fake cells and the aura of life: A philosophical diagnostic of synthetic life. ENDEAVOUR 2022; 46:100845. [PMID: 36194916 DOI: 10.1016/j.endeavour.2022.100845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/09/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Synthetic biology is often seen as the engineering turn in biology. Philosophically speaking, entities created by synthetic biology, from synthetic cells to xenobots, challenge the ontological divide between the organic and inorganic, as well as between the natural and the artificial. Entities such as synthetic cells can be seen as hybrid or transitory objects, or neo-things. However, what has remained philosophically underexplored so far is the impact these hybrid neo-things will have on (our phenomenological experience of) the living world. By extrapolating from Walter Benjamin's account of how technological reproducibility affects the aura of art, we embark upon an exploratory inquiry that seeks to fathom how the technological reproducibility of life itself may influence our experience and understanding of the living. We conclude that, much as technologies that enabled reproduction corroded the aura of original artworks (as Benjamin argued), so too will the aura of life be under siege in the era of synthetic lifeforms. This article zooms in on a specific case study, namely the research project Building a Synthetic Cell (BaSyC) and its mission to create a synthetic cell-like entity, as autonomous as possible, focusing on the properties that differentiate organic from synthetic cells.
Collapse
Affiliation(s)
- Daphne Broeks
- Institute for Science in Society, Radboud University Nijmegen, the Netherlands
| | - Yogi Hendlin
- Erasmus School of Philosophy, Erasmus University Rotterdam, the Netherlands
| | - Hub Zwart
- Erasmus School of Philosophy, Erasmus University Rotterdam, the Netherlands.
| |
Collapse
|
19
|
Jiang W, Wu Z, Gao Z, Wan M, Zhou M, Mao C, Shen J. Artificial Cells: Past, Present and Future. ACS NANO 2022; 16:15705-15733. [PMID: 36226996 DOI: 10.1021/acsnano.2c06104] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial cells are constructed to imitate natural cells and allow researchers to explore biological process and the origin of life. The construction methods for artificial cells, through both top-down or bottom-up approaches, have achieved great progress over the past decades. Here we present a comprehensive overview on the development of artificial cells and their properties and applications. Artificial cells are derived from lipids, polymers, lipid/polymer hybrids, natural cell membranes, colloidosome, metal-organic frameworks and coacervates. They can be endowed with various functions through the incorporation of proteins and genes on the cell surface or encapsulated inside of the cells. These modulations determine the properties of artificial cells, including producing energy, cell growth, morphology change, division, transmembrane transport, environmental response, motility and chemotaxis. Multiple applications of these artificial cells are discussed here with a focus on therapeutic applications. Artificial cells are used as carriers for materials and information exchange and have been shown to function as targeted delivery systems of personalized drugs. Additionally, artificial cells can function to substitute for cells with impaired function. Enzyme therapy and immunotherapy using artificial cells have been an intense focus of research. Finally, prospects of future development of cell-mimic properties and broader applications are highlighted.
Collapse
Affiliation(s)
- Wentao Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ziyu Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zheng Gao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
20
|
Baldauf L, van Buren L, Fanalista F, Koenderink GH. Actomyosin-Driven Division of a Synthetic Cell. ACS Synth Biol 2022; 11:3120-3133. [PMID: 36164967 PMCID: PMC9594324 DOI: 10.1021/acssynbio.2c00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 01/24/2023]
Abstract
One of the major challenges of bottom-up synthetic biology is rebuilding a minimal cell division machinery. From a reconstitution perspective, the animal cell division apparatus is mechanically the simplest and therefore attractive to rebuild. An actin-based ring produces contractile force to constrict the membrane. By contrast, microbes and plant cells have a cell wall, so division requires concerted membrane constriction and cell wall synthesis. Furthermore, reconstitution of the actin division machinery helps in understanding the physical and molecular mechanisms of cytokinesis in animal cells and thus our own cells. In this review, we describe the state-of-the-art research on reconstitution of minimal actin-mediated cytokinetic machineries. Based on the conceptual requirements that we obtained from the physics of the shape changes involved in cell division, we propose two major routes for building a minimal actin apparatus capable of division. Importantly, we acknowledge both the passive and active roles that the confining lipid membrane can play in synthetic cytokinesis. We conclude this review by identifying the most pressing challenges for future reconstitution work, thereby laying out a roadmap for building a synthetic cell equipped with a minimal actin division machinery.
Collapse
Affiliation(s)
| | | | - Federico Fanalista
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
21
|
Frey F, Idema T. Membrane area gain and loss during cytokinesis. Phys Rev E 2022; 106:024401. [PMID: 36110005 DOI: 10.1103/physreve.106.024401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In cytokinesis of animal cells, the cell is symmetrically divided into two. Since the cell's volume is conserved, the projected area has to increase to allow for the change of shape. Here we aim to predict how membrane gain and loss adapt during cytokinesis. We work with a kinetic model in which membrane turnover depends on membrane tension and cell shape. We apply this model to a series of calculated vesicle shapes as a proxy for the shape of dividing cells. We find that the ratio of kinetic turnover parameters changes nonmonotonically with cell shape, determined by the dependence of exocytosis and endocytosis on membrane curvature. Our results imply that controlling membrane turnover will be crucial for the successful division of artificial cells.
Collapse
Affiliation(s)
- Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Timon Idema
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
22
|
Khobaib K, Rozynek Z, Hornowski T. Mechanical properties of particle-covered droplets probed by nonuniform electric field. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Synthetic cells with self-activating optogenetic proteins communicate with natural cells. Nat Commun 2022; 13:2328. [PMID: 35484097 PMCID: PMC9050678 DOI: 10.1038/s41467-022-29871-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Development of regulated cellular processes and signaling methods in synthetic cells is essential for their integration with living materials. Light is an attractive tool to achieve this, but the limited penetration depth into tissue of visible light restricts its usability for in-vivo applications. Here, we describe the design and implementation of bioluminescent intercellular and intracellular signaling mechanisms in synthetic cells, dismissing the need for an external light source. First, we engineer light generating SCs with an optimized lipid membrane and internal composition, to maximize luciferase expression levels and enable high-intensity emission. Next, we show these cells’ capacity to trigger bioprocesses in natural cells by initiating asexual sporulation of dark-grown mycelial cells of the fungus Trichoderma atroviride. Finally, we demonstrate regulated transcription and membrane recruitment in synthetic cells using bioluminescent intracellular signaling with self-activating fusion proteins. These functionalities pave the way for deploying synthetic cells as embeddable microscale light sources that are capable of controlling engineered processes inside tissues. Synthetic biology and engineering approaches are harnessed to incorporate new capabilities in synthetic cells. Here, the authors designed bioluminescent signaling mechanisms for intracellular and intercellular synthetic-to-natural cell communication.
Collapse
|
24
|
Ghosh S, Gutti S, Chaudhuri D. Pattern formation, localized and running pulsation on active spherical membranes. SOFT MATTER 2021; 17:10614-10627. [PMID: 34605510 DOI: 10.1039/d1sm00937k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Active force generation by an actin-myosin cortex coupled to a cell membrane allows the cell to deform, respond to the environment, and mediate cell motility and division. Several membrane-bound activator proteins move along it and couple to the membrane curvature. Besides, they can act as nucleating sites for the growth of filamentous actin. Actin polymerization can generate a local outward push on the membrane. Inward pull from the contractile actomyosin cortex can propagate along the membrane via actin filaments. We use coupled evolution of fields to perform linear stability analysis and numerical calculations. As activity overcomes the stabilizing factors such as surface tension and bending rigidity, the spherical membrane shows instability towards pattern formation, localized pulsation, and running pulsation between poles. We present our results in terms of phase diagrams and evolutions of the coupled fields. They have relevance for living cells and can be verified in experiments on artificial cell-like constructs.
Collapse
Affiliation(s)
- Subhadip Ghosh
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Sashideep Gutti
- BITS Pilani Hyderabad Campus, Hyderabad 500078, Telengana, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
25
|
Tian D, Zhang X, Shi H, Liang L, Xue N, Wang JH, Yang H. Pickering-Droplet-Derived MOF Microreactors for Continuous-Flow Biocatalysis with Size Selectivity. J Am Chem Soc 2021; 143:16641-16652. [PMID: 34606264 DOI: 10.1021/jacs.1c07482] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Enzymatic microarchitectures with spatially controlled reactivity, engineered molecular sieving ability, favorable interior environment, and industrial productivity show great potential in synthetic protocellular systems and practical biotechnology, but their construction remains a significant challenge. Here, we proposed a Pickering emulsion interface-directed synthesis method to fabricate such a microreactor, in which a robust and defect-free MOF layer was grown around silica emulsifier stabilized droplet surfaces. The compartmentalized interior droplets can provide a biomimetic microenvironment to host free enzymes, while the outer MOF layer secludes active species from the surroundings and endows the microreactor with size-selective permeability. Impressively, the thus-designed enzymatic microreactor exhibited excellent size selectivity and long-term stability, as demonstrated by a 1000 h continuous-flow reaction, while affording completely equal enantioselectivities to the free enzyme counterpart. Moreover, the catalytic efficiency of such enzymatic microreactors was conveniently regulated through engineering of the type or thickness of the outer MOF layer or interior environments for the enzymes, highlighting their superior customized specialties. This study provides new opportunities in designing MOF-based artificial cellular microreactors for practical applications.
Collapse
Affiliation(s)
- Danping Tian
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Xiaoming Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Linfeng Liang
- Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Nan Xue
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Jun-Hao Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
26
|
Robinson AO, Venero OM, Adamala KP. Toward synthetic life: Biomimetic synthetic cell communication. Curr Opin Chem Biol 2021; 64:165-173. [PMID: 34597982 PMCID: PMC8784175 DOI: 10.1016/j.cbpa.2021.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Engineering synthetic minimal cells provide a controllable chassis for studying the biochemical principles of natural life, increasing our understanding of complex biological processes. Recently, synthetic cell engineering has enabled communication between both natural live cells and other synthetic cells. A system such as these enable studying interactions between populations of cells, both natural and artificial, and engineering small molecule cell communication protocols for a variety of basic research and practical applications. In this review, we summarize recent progress in engineering communication between synthetic and natural cells, and we speculate about the possible future directions of this work.
Collapse
Affiliation(s)
- Abbey O Robinson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Orion M Venero
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
27
|
Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells. Proc Natl Acad Sci U S A 2021; 118:2012170118. [PMID: 33526592 DOI: 10.1073/pnas.2012170118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The construction of energetically autonomous artificial protocells is one of the most ambitious goals in bottom-up synthetic biology. Here, we show an efficient manner to build adenosine 5'-triphosphate (ATP) synthesizing hybrid multicompartment protocells. Bacterial chromatophores from Rhodobacter sphaeroides accomplish the photophosphorylation of adenosine 5'-diphosphate (ADP) to ATP, functioning as nanosized photosynthetic organellae when encapsulated inside artificial giant phospholipid vesicles (ATP production rate up to ∼100 ATP∙s-1 per ATP synthase). The chromatophore morphology and the orientation of the photophosphorylation proteins were characterized by cryo-electron microscopy (cryo-EM) and time-resolved spectroscopy. The freshly synthesized ATP has been employed for sustaining the transcription of a DNA gene, following the RNA biosynthesis inside individual vesicles by confocal microscopy. The hybrid multicompartment approach here proposed is very promising for the construction of full-fledged artificial protocells because it relies on easy-to-obtain and ready-to-use chromatophores, paving the way for artificial simplified-autotroph protocells (ASAPs).
Collapse
|
28
|
Through the looking glass: milestones on the road towards mirroring life. Trends Biochem Sci 2021; 46:931-943. [PMID: 34294544 DOI: 10.1016/j.tibs.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/05/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
Naturally occurring DNA, RNA, and proteins predominantly exist in only one enantiomeric form (homochirality). Advances in biotechnology and chemical synthesis allow the production of the respective alternate enantiomeric form, enabling access to mirror-image versions of these natural biopolymers. Exploiting the unique properties of such mirror molecules has already led to many applications, such as biostable and nonimmunogenic therapeutics or sensors. However, a 'roadblock' for unlocking the mirror world is the lack of biological systems capable of synthesizing critical building blocks including mirror oligonucleotides and oligopeptides to reducing cost and improve purity. Here, we provide an overview of the current progress, applications, and challenges of the molecular mirror world by identifying milestones towards mirroring life.
Collapse
|
29
|
Bermudez JG, Deiters A, Good MC. Patterning Microtubule Network Organization Reshapes Cell-Like Compartments. ACS Synth Biol 2021; 10:1338-1350. [PMID: 33988978 DOI: 10.1021/acssynbio.0c00575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eukaryotic cells contain a cytoskeletal network comprised of dynamic microtubule filaments whose spatial organization is highly plastic. Specialized microtubule architectures are optimized for different cell types and remodel with the oscillatory cell cycle. These spatially distinct microtubule networks are thought to arise from the activity and localization of microtubule regulators and motors and are further shaped by physical forces from the cell boundary. Given complexities and redundancies of a living cell, it is challenging to disentangle the separate biochemical and physical contributions to microtubule network organization. Therefore, we sought to develop a minimal cell-like system to manipulate and spatially pattern the organization of cytoskeletal components in real-time, providing an opportunity to build distinct spatial structures and to determine how they are shaped by or reshape cell boundaries. We constructed a system for induced spatial patterning of protein components within cell-sized emulsion compartments and used it to drive microtubule network organization in real-time. We controlled dynamic protein relocalization using small molecules and light and slowed lateral diffusion within the lipid monolayer to create stable micropatterns with focused illumination. By fusing microtubule interacting proteins to optochemical dimerization domains, we directed the spatial organization of microtubule networks. Cortical patterning of polymerizing microtubules leads to symmetry breaking and forces that dramatically reshape the compartment. Our system has applications in cell biology to characterize the contributions of biochemical components and physical boundary conditions to microtubule network organization. Additionally, active shape control has uses in protocell engineering and for augmenting the functionalities of synthetic cells.
Collapse
Affiliation(s)
- Jessica G. Bermudez
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexander Deiters
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew C. Good
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cell and Developmental Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
30
|
Agarwal S, Klocke MA, Pungchai PE, Franco E. Dynamic self-assembly of compartmentalized DNA nanotubes. Nat Commun 2021; 12:3557. [PMID: 34117248 PMCID: PMC8196065 DOI: 10.1038/s41467-021-23850-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Bottom-up synthetic biology aims to engineer artificial cells capable of responsive behaviors by using a minimal set of molecular components. An important challenge toward this goal is the development of programmable biomaterials that can provide active spatial organization in cell-sized compartments. Here, we demonstrate the dynamic self-assembly of nucleic acid (NA) nanotubes inside water-in-oil droplets. We develop methods to encapsulate and assemble different types of DNA nanotubes from programmable DNA monomers, and demonstrate temporal control of assembly via designed pathways of RNA production and degradation. We examine the dynamic response of encapsulated nanotube assembly and disassembly with the support of statistical analysis of droplet images. Our study provides a toolkit of methods and components to build increasingly complex and functional NA materials to mimic life-like functions in synthetic cells.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Melissa A Klocke
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Passa E Pungchai
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Elisa Franco
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Department of Mechanical Engineering, University of California, Riverside, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Eto H, Franquelim HG, Heymann M, Schwille P. Membrane-coated 3D architectures for bottom-up synthetic biology. SOFT MATTER 2021; 17:5456-5466. [PMID: 34106121 DOI: 10.1039/d1sm00112d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the great challenges of bottom-up synthetic biology is to recreate the cellular geometry and surface functionality required for biological reactions. Of particular interest are lipid membrane interfaces where many protein functions take place. However, cellular 3D geometries are often complex, and custom-shaping stable lipid membranes on relevant spatial scales in the micrometer range has been hard to accomplish reproducibly. Here, we use two-photon direct laser writing to 3D print microenvironments with length scales relevant to cellular processes and reactions. We formed lipid bilayers on the surfaces of these printed structures, and we evaluated multiple combinatorial scenarios, where physiologically relevant membrane compositions were generated on several different polymer surfaces. Functional dynamic protein systems were reconstituted in vitro and their self-organization was observed in response to the 3D geometry. This method proves very useful to template biological membranes with an additional spatial dimension, and thus allows a better understanding of protein function in relation to the complex morphology of cells and organelles.
Collapse
Affiliation(s)
- Hiromune Eto
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Henri G Franquelim
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Michael Heymann
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany. and Department of Intelligent Biointegrative Systems, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Petra Schwille
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| |
Collapse
|
32
|
Westensee IN, Brodszkij E, Qian X, Marcelino TF, Lefkimmiatis K, Städler B. Mitochondria Encapsulation in Hydrogel-Based Artificial Cells as ATP Producing Subunits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007959. [PMID: 33969618 DOI: 10.1002/smll.202007959] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Artificial cells (ACs) aim to mimic selected structural and functional features of mammalian cells. In this context, energy generation is an important challenge to be addressed when self-sustained systems are desired. Here, mitochondria isolated from HepG2 cells are employed as natural subunits that facilitate chemically driven adenosine triphosphate (ATP) synthesis. The successful mitochondria isolation is confirmed by monitoring the preserved inner membrane potential, the respiration, and the ATP production ability. The encapsulation of the isolated mitochondria in gelatin-based hydrogels results in similar initial ATP production compared to mitochondria in solution with a sustained ATP production over 24 h. Furthermore, luciferase is coencapsulated with the mitochondria in gelatin-based particles to create ACs and employ the in situ produced ATP to drive the catalytic conversion of d-luciferin. The coencapsulation of luciferase-loaded liposomes with mitochondria in gelatin-based hydrogels is additionally explored where the encapsulation of mitochondria and liposomes resulted in clustering effects that are likely contributing to the functional performance of the active entities. Taken together, mitochondria show potential in cell mimicry to facilitate energy-dependent processes.
Collapse
Affiliation(s)
- Isabella Nymann Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Thaís Floriano Marcelino
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Konstantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, Pavia, 27100, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, Padova, 35100, Italy
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
33
|
Frey F, Idema T. More than just a barrier: using physical models to couple membrane shape to cell function. SOFT MATTER 2021; 17:3533-3549. [PMID: 33503097 DOI: 10.1039/d0sm01758b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The correct execution of many cellular processes, such as division and motility, requires the cell to adopt a specific shape. Physically, these shapes are determined by the interplay of the plasma membrane and internal cellular driving factors. While the plasma membrane defines the boundary of the cell, processes inside the cell can result in the generation of forces that deform the membrane. These processes include protein binding, the assembly of protein superstructures, and the growth and contraction of cytoskeletal networks. Due to the complexity of the cell, relating observed membrane deformations back to internal processes is a challenging problem. Here, we review cell shape changes in endocytosis, cell adhesion, cell migration and cell division and discuss how by modeling membrane deformations we can investigate the inner working principles of the cell.
Collapse
Affiliation(s)
- Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | | |
Collapse
|
34
|
Zorrilla S, Monterroso B, Robles-Ramos MÁ, Margolin W, Rivas G. FtsZ Interactions and Biomolecular Condensates as Potential Targets for New Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10030254. [PMID: 33806332 PMCID: PMC7999717 DOI: 10.3390/antibiotics10030254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
FtsZ is an essential and central protein for cell division in most bacteria. Because of its ability to organize into dynamic polymers at the cell membrane and recruit other protein partners to form a “divisome”, FtsZ is a leading target in the quest for new antibacterial compounds. Strategies to potentially arrest the essential and tightly regulated cell division process include perturbing FtsZ’s ability to interact with itself and other divisome proteins. Here, we discuss the available methodologies to screen for and characterize those interactions. In addition to assays that measure protein-ligand interactions in solution, we also discuss the use of minimal membrane systems and cell-like compartments to better approximate the native bacterial cell environment and hence provide a more accurate assessment of a candidate compound’s potential in vivo effect. We particularly focus on ways to measure and inhibit under-explored interactions between FtsZ and partner proteins. Finally, we discuss recent evidence that FtsZ forms biomolecular condensates in vitro, and the potential implications of these assemblies in bacterial resistance to antibiotic treatment.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Miguel-Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, TX 77030, USA;
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| |
Collapse
|
35
|
Birnie A, Dekker C. Genome-in-a-Box: Building a Chromosome from the Bottom Up. ACS NANO 2021; 15:111-124. [PMID: 33347266 PMCID: PMC7844827 DOI: 10.1021/acsnano.0c07397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/16/2020] [Indexed: 05/24/2023]
Abstract
Chromosome structure and dynamics are essential for life, as the way that our genomes are spatially organized within cells is crucial for gene expression, differentiation, and genome transfer to daughter cells. There is a wide variety of methods available to study chromosomes, ranging from live-cell studies to single-molecule biophysics, which we briefly review. While these technologies have yielded a wealth of data, such studies still leave a significant gap between top-down experiments on live cells and bottom-up in vitro single-molecule studies of DNA-protein interactions. Here, we introduce "genome-in-a-box" (GenBox) as an alternative in vitro approach to build and study chromosomes, which bridges this gap. The concept is to assemble a chromosome from the bottom up by taking deproteinated genome-sized DNA isolated from live cells and subsequently add purified DNA-organizing elements, followed by encapsulation in cell-sized containers using microfluidics. Grounded in the rationale of synthetic cell research, the approach would enable to experimentally study emergent effects at the global genome level that arise from the collective action of local DNA-structuring elements. We review the various DNA-structuring elements present in nature, from nucleoid-associated proteins and SMC complexes to phase separation and macromolecular crowders. Finally, we discuss how GenBox can contribute to several open questions on chromosome structure and dynamics.
Collapse
Affiliation(s)
- Anthony Birnie
- Department of Bionanoscience, Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
36
|
Lavickova B, Laohakunakorn N, Maerkl SJ. A partially self-regenerating synthetic cell. Nat Commun 2020; 11:6340. [PMID: 33311509 PMCID: PMC7733450 DOI: 10.1038/s41467-020-20180-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 01/16/2023] Open
Abstract
Self-regeneration is a fundamental function of all living systems. Here we demonstrate partial molecular self-regeneration in a synthetic cell. By implementing a minimal transcription-translation system within microfluidic reactors, the system is able to regenerate essential protein components from DNA templates and sustain synthesis activity for over a day. By quantitating genotype-phenotype relationships combined with computational modeling we find that minimizing resource competition and optimizing resource allocation are both critically important for achieving robust system function. With this understanding, we achieve simultaneous regeneration of multiple proteins by determining the required DNA ratios necessary for sustained self-regeneration. This work introduces a conceptual and experimental framework for the development of a self-replicating synthetic cell.
Collapse
Affiliation(s)
- Barbora Lavickova
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nadanai Laohakunakorn
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
37
|
Ganzinger KA, Merino‐Salomón A, García‐Soriano DA, Butterfield AN, Litschel T, Siedler F, Schwille P. FtsZ Reorganization Facilitates Deformation of Giant Vesicles in Microfluidic Traps**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kristina A. Ganzinger
- Department of Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
- Living Matter AMOLF P.O. Box 41883-1009 DB Amsterdam The Netherlands
| | - Adrián Merino‐Salomón
- Department of Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Daniela A. García‐Soriano
- Department of Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - A. Nelson Butterfield
- Department of Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Thomas Litschel
- Department of Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Frank Siedler
- Department of Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| |
Collapse
|
38
|
Ganzinger KA, Merino‐Salomón A, García‐Soriano DA, Butterfield AN, Litschel T, Siedler F, Schwille P. FtsZ Reorganization Facilitates Deformation of Giant Vesicles in Microfluidic Traps*. Angew Chem Int Ed Engl 2020; 59:21372-21376. [PMID: 32735732 PMCID: PMC7756778 DOI: 10.1002/anie.202001928] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/27/2020] [Indexed: 12/23/2022]
Abstract
The geometry of reaction compartments can affect the local outcome of interface-restricted reactions. Giant unilamellar vesicles (GUVs) are commonly used to generate cell-sized, membrane-bound reaction compartments, which are, however, always spherical. Herein, we report the development of a microfluidic chip to trap and reversibly deform GUVs into cigar-like shapes. When trapping and elongating GUVs that contain the primary protein of the bacterial Z ring, FtsZ, we find that membrane-bound FtsZ filaments align preferentially with the short GUV axis. When GUVs are released from this confinement and membrane tension is relaxed, FtsZ reorganizes reversibly from filaments into dynamic rings that stabilize membrane protrusions; a process that allows reversible GUV deformation. We conclude that microfluidic traps are useful for manipulating both geometry and tension of GUVs, and for investigating how both affect the outcome of spatially-sensitive reactions inside them, such as that of protein self-organization.
Collapse
Affiliation(s)
- Kristina A. Ganzinger
- Department of Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Living MatterAMOLFP.O. Box 41883-1009 DBAmsterdamThe Netherlands
| | - Adrián Merino‐Salomón
- Department of Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Daniela A. García‐Soriano
- Department of Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - A. Nelson Butterfield
- Department of Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Thomas Litschel
- Department of Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Frank Siedler
- Department of Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Petra Schwille
- Department of Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
39
|
Cho E, Lu Y. Compartmentalizing Cell-Free Systems: Toward Creating Life-Like Artificial Cells and Beyond. ACS Synth Biol 2020; 9:2881-2901. [PMID: 33095011 DOI: 10.1021/acssynbio.0c00433] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Building an artificial cell is a research area that is rigorously studied in the field of synthetic biology. It has brought about much attention with the aim of ultimately constructing a natural cell-like structure. In particular, with the more mature cell-free platforms and various compartmentalization methods becoming available, achieving this aim seems not far away. In this review, we discuss the various types of artificial cells capable of hosting several cellular functions. Different compartmental boundaries and the mature and evolving technologies that are used for compartmentalization are examined, and exciting recent advances that overcome or have the potential to address current challenges are discussed. Ultimately, we show how compartmentalization and cell-free systems have, and will, come together to fulfill the goal to assemble a fully synthetic cell that displays functionality and complexity as advanced as that in nature. The development of such artificial cell systems will offer insight into the fundamental study of evolutionary biology and the sea of applications as a result. Although several challenges remain, emerging technologies such as artificial intelligence also appear to help pave the way to address them and achieve the ultimate goal.
Collapse
Affiliation(s)
- Eunhee Cho
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Qian X, Nymann Westensee I, Brodszkij E, Städler B. Cell mimicry as a bottom-up strategy for hierarchical engineering of nature-inspired entities. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1683. [PMID: 33205632 DOI: 10.1002/wnan.1683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Artificial biology is an emerging concept that aims to design and engineer the structure and function of natural cells, organelles, or biomolecules with a combination of biological and abiotic building blocks. Cell mimicry focuses on concepts that have the potential to be integrated with mammalian cells and tissue. In this feature article, we will emphasize the advancements in the past 3-4 years (2017-present) that are dedicated to artificial enzymes, artificial organelles, and artificial mammalian cells. Each aspect will be briefly introduced, followed by highlighting efforts that considered key properties of the different mimics. Finally, the current challenges and opportunities will be outlined. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
41
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
42
|
Chen H, Li W, Lin Y, Wang L, Liu X, Huang X. Fusion‐Induced Structural and Functional Evolution in Binary Emulsion Communities. Angew Chem Int Ed Engl 2020; 59:16953-16960. [DOI: 10.1002/anie.202004617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/04/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Weiran Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
43
|
Chen H, Li W, Lin Y, Wang L, Liu X, Huang X. Fusion‐Induced Structural and Functional Evolution in Binary Emulsion Communities. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Weiran Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
44
|
Chao Y, Hung LT, Feng J, Yuan H, Pan Y, Guo W, Zhang Y, Shum HC. Flower-like droplets obtained by self-emulsification of a phase-separating (SEPS) aqueous film. SOFT MATTER 2020; 16:6050-6055. [PMID: 32490476 DOI: 10.1039/d0sm00660b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-emulsification, referring to the spontaneous formation of droplets of one phase in another immiscible phase, is attracting growing interest because of its simplicity in creating droplets. Existing self-emulsification methods usually rely on phase inversion, temperature cycling, and solvent evaporation. However, achieving spatiotemporal control over the morphology of self-emulsified droplets remains challenging. In this work, a conceptually new approach of creating both simple and complex droplets by self-emulsification of a phase-separating (SEPS) aqueous film, is reported. The aqueous film is formed by depositing a surfactant-laden aqueous droplet onto an aqueous surface, and the fragmentation of the film into droplets is triggered by a wetting transition. Smaller and more uniform droplets can be achieved by introducing liquid-liquid phase separation (LLPS). Moreover, properly modulating quadruple LLPS and film fragmentation enables the creation of highly multicellular droplets such as flower-like droplets stabilized by the interfacial self-assembly of nanoparticles. This work provides a novel strategy to design aqueous droplets by LLPS, and it will inspire a wide range of applications such as membraneless organelle synthesis, cell mimics and delivery.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Lap Tak Hung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana Champaign Urbana, Illinois 61801, USA
| | - Hao Yuan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China. and Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Yi Pan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Wei Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
45
|
|
46
|
Jia H, Litschel T, Heymann M, Eto H, Franquelim HG, Schwille P. Shaping Giant Membrane Vesicles in 3D-Printed Protein Hydrogel Cages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906259. [PMID: 32105403 DOI: 10.1002/smll.201906259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Giant unilamellar phospholipid vesicles are attractive starting points for constructing minimal living cells from the bottom-up. Their membranes are compatible with many physiologically functional modules and act as selective barriers, while retaining a high morphological flexibility. However, their spherical shape renders them rather inappropriate to study phenomena that are based on distinct cell shape and polarity, such as cell division. Here, a microscale device based on 3D printed protein hydrogel is introduced to induce pH-stimulated reversible shape changes in trapped vesicles without compromising their free-standing membranes. Deformations of spheres to at least twice their aspect ratio, but also toward unusual quadratic or triangular shapes can be accomplished. Mechanical force induced by the cages to phase-separated membrane vesicles can lead to spontaneous shape deformations, from the recurrent formation of dumbbells with curved necks between domains to full budding of membrane domains as separate vesicles. Moreover, shape-tunable vesicles are particularly desirable when reconstituting geometry-sensitive protein networks, such as reaction-diffusion systems. In particular, vesicle shape changes allow to switch between different modes of self-organized protein oscillations within, and thus, to influence reaction networks directly by external mechanical cues.
Collapse
Affiliation(s)
- Haiyang Jia
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Thomas Litschel
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Michael Heymann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Hiromune Eto
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Henri G Franquelim
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| |
Collapse
|
47
|
Miller TE, Beneyton T, Schwander T, Diehl C, Girault M, McLean R, Chotel T, Claus P, Cortina NS, Baret JC, Erb TJ. Light-powered CO 2 fixation in a chloroplast mimic with natural and synthetic parts. Science 2020; 368:649-654. [PMID: 32381722 DOI: 10.1126/science.aaz6802] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
Nature integrates complex biosynthetic and energy-converting tasks within compartments such as chloroplasts and mitochondria. Chloroplasts convert light into chemical energy, driving carbon dioxide fixation. We used microfluidics to develop a chloroplast mimic by encapsulating and operating photosynthetic membranes in cell-sized droplets. These droplets can be energized by light to power enzymes or enzyme cascades and analyzed for their catalytic properties in multiplex and real time. We demonstrate how these microdroplets can be programmed and controlled by adjusting internal compositions and by using light as an external trigger. We showcase the capability of our platform by integrating the crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle, a synthetic network for carbon dioxide conversion, to create an artificial photosynthetic system that interfaces the natural and the synthetic biological worlds.
Collapse
Affiliation(s)
- Tarryn E Miller
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Thomas Beneyton
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France
| | - Thomas Schwander
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Christoph Diehl
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | | | - Richard McLean
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Tanguy Chotel
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France
| | - Peter Claus
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Niña Socorro Cortina
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Jean-Christophe Baret
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France. .,Institut Universitaire de France, Paris 75005, France
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany. .,Center for Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| |
Collapse
|
48
|
Totlani K, Hurkmans JW, van Gulik WM, Kreutzer MT, van Steijn V. Scalable microfluidic droplet on-demand generator for non-steady operation of droplet-based assays. LAB ON A CHIP 2020; 20:1398-1409. [PMID: 32255441 DOI: 10.1039/c9lc01103j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We developed a microfluidic droplet on-demand (DoD) generator that enables the production of droplets with a volume solely governed by the geometry of the generator for a range of operating conditions. The prime reason to develop this novel type of DoD generator is that its robustness in operation enables scale out and operation under non-steady conditions, which are both essential features for the further advancement of droplet-based assays. We first detail the working principle of the DoD generator and study the sensitivity of the volume of the generated droplets with respect to the used fluids and control parameters. We next compare the performance of our DoD generator when scaled out to 8 parallel generators to the performance of a conventional DoD generator in which the droplet volume is not geometry-controlled, showing its superior performance. Further scale out to 64 parallel DoD generators shows that all generators produce droplets with a volume between 91% and 105% of the predesigned volume. We conclude the paper by presenting a simple droplet-based assay in which the DoD generator enables sequential supply of reagent droplets to a droplet stored in the device, illustrating its potential to be used in droplet-based assays for biochemical studies under non-steady operation conditions.
Collapse
Affiliation(s)
- Kartik Totlani
- Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Li C, Li Q, Wang Z, Han X. Phospholipid Self-Assemblies Shaped Like Ancient Chinese Coins for Artificial Organelles. Anal Chem 2020; 92:6060-6064. [PMID: 32207619 DOI: 10.1021/acs.analchem.0c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phospholipid self-assemblies are ubiquitous in organisms. Nonspherical lipid-based proto-organelles bear the merits with structures similar to real organelles. It is still a challenge to mimic mass transport between organelles inside cells. Herein, unusual phospholipid self-assemblies shaped like ancient Chinese coins (ACC) were discovered by the recrystallization of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine in an ethanol/water solution from 50 to 25 °C with a certain cooling rate. Their diameter and the ratio of the square edge to the disk diameter were controlled by varying ethanol percentage, lipid concentration, and cooling rate. The ACC-shaped phospholipid bicelles expanded to stacked cisterna structures in pure water, which were regarded as artificial organelles. Mass transport among organelles in a cell was mimicked via the membrane fusion of vesicle shuttles and artificial organelles, which induced cascade enzyme reactions inside artificial organelles. The ACC-shaped phospholipid assemblies provide nice platforms for the studies of cell biology and bottom-up synthetic biology.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| |
Collapse
|
50
|
Mohanan G, Nair KS, Nampoothiri KM, Bajaj H. Engineering bio-mimicking functional vesicles with multiple compartments for quantifying molecular transport. Chem Sci 2020; 11:4669-4679. [PMID: 34122921 PMCID: PMC8159255 DOI: 10.1039/d0sc00084a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Controlled design of giant unilamellar vesicles under defined conditions has vast applications in the field of membrane and synthetic biology. Here, we bio-engineer bacterial-membrane mimicking models of controlled size under defined salt conditions over a range of pH. A complex bacterial lipid extract is used for construction of physiologically relevant Gram-negative membrane mimicking vesicles whereas a ternary mixture of charged lipids (DOPG, cardiolipin and lysyl-PG) is used for building Gram-positive bacterial-membrane vesicles. Furthermore, we construct stable multi-compartment biomimicking vesicles using the gel-assisted swelling method. Importantly, we validate the bio-application of the bacterial vesicle models by quantifying diffusion of chemically synthetic amphoteric antibiotics. The transport rate is pH-responsive and depends on the lipid composition, based on which a permeation model is proposed. The permeability properties of antimicrobial peptides reveal pH dependent pore-forming activity in the model vesicles. Finally, we demonstrate the functionality of the vesicles by quantifying the uptake of membrane-impermeable molecules facilitated by embedded pore-forming proteins. We suggest that the bacterial vesicle models developed here can be used to understand fundamental biological processes like the peptide assembly mechanism or bacterial cell division and will have a multitude of applications in the bottom-up assembly of a protocell. Giant vesicle functional models mimicking a bacterial membrane under physiological conditions are constructed.![]()
Collapse
Affiliation(s)
- Gayathri Mohanan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - Karthika S Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| |
Collapse
|