1
|
Jeong M, Ko B, Jung C, Kim J, Jang J, Mun J, Lee J, Yun S, Kim S, Rho J. Printable Light-Emitting Metasurfaces with Enhanced Directional Photoluminescence. NANO LETTERS 2024; 24:5783-5790. [PMID: 38695397 DOI: 10.1021/acs.nanolett.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Nanoimprint lithography is gaining popularity as a cost-efficient way to reproduce nanostructures in large quantities. Recent advances in nanoimprinting lithography using high-index nanoparticles have demonstrated replication of photonic devices, but it is difficult to confer special properties on nanostructures beyond general metasurfaces. Here, we introduce a novel method for fabricating light-emitting metasurfaces using nanoimprinting lithography. By utilizing quantum dots embedded in resin, we successfully imprint dielectric metasurfaces that function simultaneously as both emitters and resonators. This approach to incorporating quantum dots into metasurfaces demonstrates an improvement in photoluminescence characteristics compared to the situation where quantum dots and metasurfaces are independently incorporated. Design of the metasurface is specifically tailored to support photonic modes within the emission band of quantum dots with a large enhancement of photoluminescence. This study indicates that nanoimprinting lithography has the capability to construct nanostructures using functionalized nanoparticles and could be used in various fields of nanophotonic applications.
Collapse
Affiliation(s)
- Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Jungho Mun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suhyeon Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Lee U, Kim H, Oh DK, Lee N, Park J, Park J, Son H, Noh H, Rho J, Ok JG. Azimuthal rotation-controlled nanoinscribing for continuous patterning of period- and shape-tunable asymmetric nanogratings. MICROSYSTEMS & NANOENGINEERING 2024; 10:60. [PMID: 38736716 PMCID: PMC11088629 DOI: 10.1038/s41378-024-00687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/05/2024] [Accepted: 02/01/2024] [Indexed: 05/14/2024]
Abstract
We present an azimuthal-rotation-controlled dynamic nanoinscribing (ARC-DNI) process for continuous and scalable fabrication of asymmetric nanograting structures with tunable periods and shape profiles. A sliced edge of a nanograting mold, which typically has a rectangular grating profile, slides over a polymeric substrate to induce its burr-free plastic deformation into a linear nanopattern. During this continuous nanoinscribing process, the "azimuthal angle," that is, the angle between the moving direction of the polymeric substrate and the mold's grating line orientation, can be controlled to tailor the period, geometrical shape, and profile of the inscribed nanopatterns. By modulating the azimuthal angle, along with other important ARC-DNI parameters such as temperature, force, and inscribing speed, we demonstrate that the mold-opening profile and temperature- and time-dependent viscoelastic polymer reflow can be controlled to fabricate asymmetric, blazed, and slanted nanogratings that have diverse geometrical profiles such as trapezoidal, triangular, and parallelogrammatic. Finally, period- and profile-tunable ARC-DNI can be utilized for the practical fabrication of diverse optical devices, as is exemplified by asymmetric diffractive optical elements in this study.
Collapse
Affiliation(s)
- Useung Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
- Present Address: Department of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Hyein Kim
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Nayeong Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Jonggab Park
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Jaewon Park
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Hyunji Son
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Hyunchan Noh
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
- Present Address: Research Team, Hyundai Motor Group, 150 Hyundaiyeonguso-ro, Hwaseong-si, Gyeonggi 18280 Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673 Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673 Republic of Korea
| | - Jong G. Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| |
Collapse
|
3
|
Kim T, Kim M, Han J, Jeong H, Lee S, Kim J, Lee D, Jeong HE, Ok JG. Mechanically processed, vacuum- and etch-free fabrication of metal-wire-embedded microtrenches interconnected by semiconductor nanowires for flexible bending-sensitive optoelectronic sensors. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1141-1148. [PMID: 39634018 PMCID: PMC11501607 DOI: 10.1515/nanoph-2023-0667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/10/2023] [Indexed: 12/07/2024]
Abstract
We demonstrate the facile fabrication of metal-wire-embedded microtrenches interconnected with semiconducting ZnO nanowires (ZNWs) through the continuous mechanical machining of micrograting trenches, the mechanical embedding of solution-processable metal wires therein, and the metal-mediated hydrothermal growth of ZNWs selectively thereto. The entire process can be performed at room or a very low temperature without resorting to vacuum, lithography, and etching steps, thereby enabling the use of flexible polymer substrates of scalable sizes. We optimize the fabrication procedure and resulting structural characteristics of this nanowire-interconnected flexible trench-embedded electrode (NIFTEE) architecture. Specifically, we carefully sequence the coating, baking, and doctor-blading of an ionic metal solution for the embedding of clean metal wires, and control the temperature and time of the hydrothermal ZNW growth process for faithful interconnections of such trench-embedded metal wires via high-density ZNWs. The NIFTEE structure can function as a bending-sensitive optoelectronic sensor, as the number of ZNWs interconnecting the neighboring metal wires changes upon mechanical bending. It may benefit further potential applications in diverse fields such as wearable technology, structural health monitoring, and soft robotics, where bending-sensitive devices are in high demand.
Collapse
Affiliation(s)
- Taeyun Kim
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul01811, Republic of Korea
| | - Minwook Kim
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul01811, Republic of Korea
| | - Jinkyu Han
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul01811, Republic of Korea
| | - Hocheol Jeong
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul01811, Republic of Korea
| | - Seungmin Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul01811, Republic of Korea
| | - Jaeil Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi13120, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Jong G. Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul01811, Republic of Korea
| |
Collapse
|
4
|
Sudhakaran KP, Benny A, John AT, Hariharan M. Exploring the influence of graphene on antiaromaticity of pentalene. Phys Chem Chem Phys 2023; 25:26986-26990. [PMID: 37812393 DOI: 10.1039/d3cp02760k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Theoretical investigations on the influence of graphene fragments on the antiaromaticity of pentalene are conducted by employing multiple aromaticity descriptors based on magnetic, geometric and electronic criteria. NICS as a sole descriptor for analysing the antiaromaticity of pentalene on graphene fragments has to be carefully considered while looking through the other aromaticity indicators.
Collapse
Affiliation(s)
- Keerthy P Sudhakaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Alfy Benny
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Athira T John
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
5
|
Han I, Song J, Kim K, Kim H, Son H, Kim M, Lee U, Choi K, Ji H, Lee SH, Kwak MK, Ok JG. Demonstration of a roll-to-roll-configurable, all-solution-based progressive assembly of flexible transducer devices consisting of functional nanowires on micropatterned electrodes. Sci Rep 2023; 13:11980. [PMID: 37488145 PMCID: PMC10366188 DOI: 10.1038/s41598-023-38635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
We demonstrate continuous fabrication of flexible transducer devices consisting of interdigitated (IDT) Ag microelectrodes interconnected by ZnO nanowires (ZNWs), created via serially connected solution-processable micro- and nanofabrication processes. On an Ag layer obtainable from the mild thermal reduction of an ionic Ag ink coating, the roll-to-roll-driven photolithography process [termed photo roll lithography (PRL)] followed by wet-etching can be applied to continuously define the IDT microelectrode structure. Conformal ZNWs can then be grown selectively on the Ag electrodes to interconnect them via an Ag-mediated hydrothermal ZNW growth that does not require high-temperature seed sintering. Given that all of these constitutive processes are vacuum-free and solution-processable at a low temperature, and are compatible with continuous processing onto flexible substrates, they can be eventually configured into the roll-to-roll-processable progressive assembly. Through parametric optimizations of processes consisting of the roll-to-roll-configurable, solution-based progressive assembly of nanostructures (ROLSPAN), a flexible transducer consisting of ZNW-interconnected, PRL-ed IDT Ag electrodes can be developed. This flexible architecture faithfully performs UV sensing as well as optoelectronic transduction. The ROLSPAN concept along with its specific applicability to flexible devices may inspire many diverse functional systems requiring high-throughput low-temperature fabrication over large-area flexible substrates.
Collapse
Affiliation(s)
- Inhui Han
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul, 01811, Republic of Korea
| | - Jungkeun Song
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul, 01811, Republic of Korea
| | - Kwangjun Kim
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul, 01811, Republic of Korea
| | - Hyein Kim
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul, 01811, Republic of Korea
| | - Hyunji Son
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul, 01811, Republic of Korea
| | - Minwook Kim
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul, 01811, Republic of Korea
| | - Useung Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul, 01811, Republic of Korea
| | - Kwangjin Choi
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul, 01811, Republic of Korea
| | - Hojae Ji
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul, 01811, Republic of Korea
| | - Sung Ho Lee
- Department of Mechanical Engineering, Dong-A University, 37 Nakdong-Daero 550-Gil, Saha-Gu, Busan, 49315, Republic of Korea.
| | - Moon Kyu Kwak
- School of Mechanical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
- Ncoretechnology Inc., 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul, 01811, Republic of Korea.
| |
Collapse
|
6
|
Lee SH, Kang M, Jang H, Kondaveeti S, Sun K, Kim S, Park HH, Jeong HE. Bifunctional Amphiphilic Nanospikes with Antifogging and Antibiofouling Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39478-39488. [PMID: 35959590 DOI: 10.1021/acsami.2c08266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past few decades, extensive research efforts have been devoted to developing surfaces with unique functionalities, such as controlled wettability, antibiofouling, antifogging, and anti-icing behavior, for applications in a wide range of fields, including biomedical devices, optical instruments, microfluidics, and energy conservation and harvesting. However, many of the previously reported approaches have limitations with regard to eco-friendliness, multifunctionality, long-term stability and efficacy, and cost effectiveness. Herein, we propose a scalable bifunctional surface that simultaneously exhibits excellent antifogging and antibiofouling properties based on the synergistic integration of an eco-friendly and bio-friendly polyethylene glycol (PEG) hydrogel, oleamide (OA), and nanoscale architectures in a single flexible platform. We demonstrate that the PEG-OA-nanostructure hybrid exhibits excellent antifogging performance owing to its enhanced water absorption and spreading properties. We further show that the triple hybrid exhibits notable biofilm resistance without the use of toxic biocides or chemicals by integrating the "fouling-resistant" mechanism of the PEG hydrogel, the "fouling-release" mechanism of OA, and the "foulant-killing" mechanism of the nanostructures.
Collapse
Affiliation(s)
- Sang-Hyeon Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyejin Jang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Stalin Kondaveeti
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kahyun Sun
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Somi Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, Wonkwang University, Jeonbuk 54538, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
7
|
Andreeva Y, Suvorov A, Grigoryev E, Khmelenin D, Zhukov M, Makin V, Sinev D. Laser Fabrication of Highly Ordered Nanocomposite Subwavelength Gratings. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2811. [PMID: 36014676 PMCID: PMC9416309 DOI: 10.3390/nano12162811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Optical nanogratings are widely used for different optical, photovoltaic, and sensing devices. However, fabrication methods of highly ordered gratings with the period around optical wavelength range are usually rather expensive and time consuming. In this article, we present high speed single-step approach for fabrication of highly ordered nanocomposite gratings with a period of less than 355 nm. For the purpose, we used commercially available nanosecond-pulsed fiber laser system operating at the wavelength of 355 nm. One-dimensional and two-dimensional nanostructures can be formed by direct laser treatment with different scan speed and intensity. These structures exhibit not only dispersing, but also anisotropic properties. The obtained results open perspectives for easier mass production of polarization splitters and filters, planar optics, and also for security labeling.
Collapse
Affiliation(s)
- Yaroslava Andreeva
- Institute of Laser Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Alexander Suvorov
- Institute of Laser Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Evgeniy Grigoryev
- Interdisciplinary Resource Center for Nanotechnology of Research Park of SPbSU, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | - Dmitry Khmelenin
- Federal Scientific Research Center “Crystallography and Photonics” RAS, 119333 Moscow, Russia
| | - Mikhail Zhukov
- Laboratory of Scanning Probe Microscopy and Spectroscopy, Institute for Analytical Instrumentation RAS, 198095 Saint Petersburg, Russia
| | - Vladimir Makin
- Institute for Nuclear Energy (Branch), Peter the Great St.Petersburg Polytechnic University, Sosnovy Bor City, 188541 Leningrad Oblast, Russia
| | - Dmitry Sinev
- Institute of Laser Technologies, ITMO University, 197101 Saint Petersburg, Russia
| |
Collapse
|
8
|
Kim G, Kim S, Kim H, Lee J, Badloe T, Rho J. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays. NANOSCALE 2022; 14:4380-4410. [PMID: 35266481 DOI: 10.1039/d1nr07909c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The holographic display, one of the most realistic ways to reconstruct optical images in three-dimensional (3D) space, has gained a lot of attention as a next-generation display platform for providing deeper immersive experiences to users. So far, diffractive optical elements (DOEs) and spatial light modulators (SLMs) have been used to generate holographic images by modulating electromagnetic waves at each pixel. However, such architectures suffer from limitations in terms of having a resolution of only a few microns and the bulkiness of the entire optical system. In this review, we describe novel metasurfaces-based nanophotonic platforms that have shown exceptional control of electromagnetic waves at the subwavelength scale as promising candidates to overcome existing restrictions, while realizing flat optical devices. After introducing the fundamentals of metasurfaces in terms of spatial and spectral wavefront modulation, we present a variety of multiplexing approaches for high-capacity and full-color metaholograms exploiting the multiple properties of light as an information carrier. We then review tunable metaholograms using active materials modulated by several external stimuli. Afterward, we discuss the integration of metasurfaces with other optical elements required for future 3D display platforms in augmented/virtual reality (AR/VR) displays such as lenses, beam splitters, diffusers, and eye-tracking sensors. Finally, we address the challenges of conventional nanofabrication methods and introduce scalable preparation techniques that can be applied to metasurface-based nanophotonic technologies towards commercially and ergonomically viable future holographic displays.
Collapse
Affiliation(s)
- Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Seokwoo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
9
|
Xiong Y, Li N, Che C, Wang W, Barya P, Liu W, Liu L, Wang X, Wu S, Hu H, Cunningham BT. Microscopies Enabled by Photonic Metamaterials. SENSORS (BASEL, SWITZERLAND) 2022; 22:1086. [PMID: 35161831 PMCID: PMC8840465 DOI: 10.3390/s22031086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
In recent years, the biosensor research community has made rapid progress in the development of nanostructured materials capable of amplifying the interaction between light and biological matter. A common objective is to concentrate the electromagnetic energy associated with light into nanometer-scale volumes that, in many cases, can extend below the conventional Abbé diffraction limit. Dating back to the first application of surface plasmon resonance (SPR) for label-free detection of biomolecular interactions, resonant optical structures, including waveguides, ring resonators, and photonic crystals, have proven to be effective conduits for a wide range of optical enhancement effects that include enhanced excitation of photon emitters (such as quantum dots, organic dyes, and fluorescent proteins), enhanced extraction from photon emitters, enhanced optical absorption, and enhanced optical scattering (such as from Raman-scatterers and nanoparticles). The application of photonic metamaterials as a means for enhancing contrast in microscopy is a recent technological development. Through their ability to generate surface-localized and resonantly enhanced electromagnetic fields, photonic metamaterials are an effective surface for magnifying absorption, photon emission, and scattering associated with biological materials while an imaging system records spatial and temporal patterns. By replacing the conventional glass microscope slide with a photonic metamaterial, new forms of contrast and enhanced signal-to-noise are obtained for applications that include cancer diagnostics, infectious disease diagnostics, cell membrane imaging, biomolecular interaction analysis, and drug discovery. This paper will review the current state of the art in which photonic metamaterial surfaces are utilized in the context of microscopy.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Nantao Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Congnyu Che
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA
| | - Weijing Wang
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA
| | - Priyash Barya
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Weinan Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Leyang Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Xiaojing Wang
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Shaoxiong Wu
- Zhejiang University-University of Illinois at Urbana-Champaign Institute, International Campus, Zhejiang University, Haining 314400, China; (S.W.); (H.H.)
| | - Huan Hu
- Zhejiang University-University of Illinois at Urbana-Champaign Institute, International Campus, Zhejiang University, Haining 314400, China; (S.W.); (H.H.)
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Kroeger AA, Karton A. Graphene-induced planarization of cyclooctatetraene derivatives. J Comput Chem 2022; 43:96-105. [PMID: 34677827 DOI: 10.1002/jcc.26774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/10/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022]
Abstract
Stable equilibrium compounds containing a planar antiaromatic cyclooctatetraene (COT) ring are promising candidates for organic electronic devices such as organic semiconductor transistors. The planarization of COT by incorporation into rigid planar π-systems, as well as by oxidation or reduction has attracted considerable attention in recent years. Using dispersion-corrected density functional theory calculations, we explore an alternative approach of planarizing COT derivatives by adsorption onto graphene. We show that strong π-π stacking interactions between graphene and COT derivatives induce a planar structure with an antiaromatic central COT ring. In addition to being reversible, this strategy provides a novel approach for planarizing COT without the need for incorporation into a rigid structure, atomic substitution, oxidation, or reduction.
Collapse
Affiliation(s)
- Asja A Kroeger
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
11
|
Chen L, Panday A, Park J, Kim M, Oh DK, Ok JG, Guo LJ. Size-Selective Sub-micrometer-Particle Confinement Utilizing Ionic Entropy-Directed Trapping in Inscribed Nanovoid Patterns. ACS NANO 2021; 15:14185-14192. [PMID: 34398602 DOI: 10.1021/acsnano.1c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have developed a single-step, high-throughput methodology to selectively confine sub-micrometer particles of a specific size into sequentially inscribed nanovoid patterns by utilizing electrostatic and entropic particle-void interactions in an ionic solution. The nanovoid patterns can be rendered positively charged by coating with an aluminum oxide layer, which can then localize negatively charged particles of a specific size into ordered arrays defined by the nanovoid topography. On the basis of the Poisson-Boltzmann model, the size-selective localization of particles in the voids is directed by the interplay between particle-nanovoid geometry, electrostatic interactions, and ionic entropy change induced by charge regulation in the electrical double layer overlapping region. The underlying principle and developed method could potentially be extended to size-selective trapping, separation, and patterning of many other objects including biological structures.
Collapse
Affiliation(s)
- Long Chen
- Applied Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Ashwin Panday
- Macromolecular Science and Engineering, University of Michigan, 1221 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Jonggab Park
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Mingyu Kim
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - L Jay Guo
- Applied Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering, University of Michigan, 1221 Beal Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Lee W, Chae H, Oh DK, Lee M, Chun H, Yeon G, Park J, Kim J, Youn H, Rho J, Ok JG. Solution-processable electrode-material embedding in dynamically inscribed nanopatterns (SPEEDIN) for continuous fabrication of durable flexible devices. MICROSYSTEMS & NANOENGINEERING 2021; 7:74. [PMID: 34631142 PMCID: PMC8473567 DOI: 10.1038/s41378-021-00307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/15/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
A facile and scalable lithography-free fabrication technique, named solution-processable electrode-material embedding in dynamically inscribed nanopatterns (SPEEDIN), is developed to produce highly durable electronics. SPEEDIN uniquely utilizes a single continuous flow-line manufacturing process comprised of dynamic nanoinscribing and metal nanoparticle solution coating with selective embedding. Nano- and/or micro-trenches are inscribed into arbitrary polymers, and then an Ag nanoparticle solution is dispersed, soft-baked, doctor-bladed, and hard-baked to embed Ag micro- and nanowire structures into the trenches. Compared to lithographically embossed metal structures, the embedded SPEEDIN architectures can achieve higher durability with comparable optical and electrical properties and are robust and power-efficient even under extreme stresses such as scratching and bending. As one tangible application of SPEEDIN, we demonstrate a flexible metal electrode that can operate at 5 V at temperatures up to 300 °C even under the influence of harsh external stimuli. SPEEDIN can be applied to the scalable fabrication of diverse flexible devices that are reliable for heavy-duty operation in harsh environments involving high temperatures, mechanical deformations, and chemical hazards.
Collapse
Affiliation(s)
- Wonseok Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Hyoungseok Chae
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Minyoung Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Hyunsoo Chun
- Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Gyubeom Yeon
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Jaewon Park
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Hongseok Youn
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158 Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673 Republic of Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| |
Collapse
|
13
|
Oh DK, Lee T, Ko B, Badloe T, Ok JG, Rho J. Nanoimprint lithography for high-throughput fabrication of metasurfaces. FRONTIERS OF OPTOELECTRONICS 2021; 14:229-251. [PMID: 36637666 PMCID: PMC9743954 DOI: 10.1007/s12200-021-1121-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
Metasurfaces are composed of periodic sub-wavelength nanostructures and exhibit optical properties that are not found in nature. They have been widely investigated for optical applications such as holograms, wavefront shaping, and structural color printing, however, electron-beam lithography is not suitable to produce large-area metasurfaces because of the high fabrication cost and low productivity. Although alternative optical technologies, such as holographic lithography and plasmonic lithography, can overcome these drawbacks, such methods are still constrained by the optical diffraction limit. To break through this fundamental problem, mechanical nanopatterning processes have been actively studied in many fields, with nanoimprint lithography (NIL) coming to the forefront. Since NIL replicates the nanopattern of the mold regardless of the diffraction limit, NIL can achieve sufficiently high productivity and patterning resolution, giving rise to an explosive development in the fabrication of metasurfaces. In this review, we focus on various NIL technologies for the manufacturing of metasurfaces. First, we briefly describe conventional NIL and then present various NIL methods for the scalable fabrication of metasurfaces. We also discuss recent applications of NIL in the realization of metasurfaces. Finally, we conclude with an outlook on each method and suggest perspectives for future research on the high-throughput fabrication of active metasurfaces.
Collapse
Affiliation(s)
- Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taejun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology (SEOULTECH), Seoul, 01811, Republic of Korea.
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
14
|
Park J, Lee KT, Yeon G, Choi J, Kim M, Han B, Baac HW, Guo LJ, Ok JG. Demonstration of the one-step continuous fabrication of flexible polymer ridge waveguides via nanochannel-guided lithography. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Lee S, Lee N, Yeon G, Park J, Choi H, Koo S, Oh DK, Ok JG. Piezo-Actuated One-Axis Vibrational Patterning for Mold-Free Continuous Fabrication of High-Precision Period-Programmable Micro- and Nanopatterns. ACS NANO 2021; 15:3070-3078. [PMID: 33471503 DOI: 10.1021/acsnano.0c09540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a mold-free high-resolution nanopatterning technology named piezo-actuated one-axis vibrational patterning (POP) that enables continuous and scalable fabrication of micro- and nanopatterns with precisely programmable periods and dimensions. POP utilizes the piezoelectric stack-actuated high-precision uniaxial vibration of a flat, pattern-free rigid tool edge to conduct sub-50 nm-periodic indentations on various compliant substrates laterally fed underneath. By controlling the tool vibration frequency, tool temperature, and substrate feed rate and by combining sequential tool strokes along multiple directions, diverse functional micro- and nanopatterns with variable periods and depths and multidimensional profiles can be continuously created without resorting to mold prefabrication. With its simple but universal principle, excellent scalability, and versatile processability, POP can be practically applied to many functional devices particularly requiring large-area micro- and nanopatterns with specifically designed periods and dimensions.
Collapse
Affiliation(s)
- Seungjo Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Nayeong Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Gyubeom Yeon
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Jonggab Park
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Hyunsik Choi
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Sungkwan Koo
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Dong Kyo Oh
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| |
Collapse
|
16
|
Kroeger AA, Karton A. π-π Catalysis in Carbon Flatland-Flipping [8]Annulene on Graphene. Chemistry 2021; 27:3420-3426. [PMID: 33295080 DOI: 10.1002/chem.202004045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Indexed: 11/10/2022]
Abstract
Noncovalent interactions are an integral part of the modern catalysis toolbox. Although stronger noncovalent interactions such as hydrogen bonding are commonly the main driving force of catalysis, π-π interactions typically provide smaller additional stabilizations, for example, to afford selectivity enhancements. Here, it is shown computationally that pristine graphene flakes may efficiently catalyze the skeletal inversions of various benzannulated cyclooctatetraene derivatives, providing an example of a catalytic process driven solely by π-π stacking interactions. Hereby, the catalytic effect results from disproportionate shape complementarity between catalyst and transition structure compared with catalyst and reactant. An energy decomposition analysis reveals electrostatic and, especially with increasing system size, to a larger extent, dispersion interactions as the origin of stabilization.
Collapse
Affiliation(s)
- Asja A Kroeger
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
17
|
Handrea-Dragan M, Botiz I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers (Basel) 2021; 13:445. [PMID: 33573248 PMCID: PMC7866561 DOI: 10.3390/polym13030445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
There is an astonishing number of optoelectronic, photonic, biological, sensing, or storage media devices, just to name a few, that rely on a variety of extraordinary periodic surface relief miniaturized patterns fabricated on polymer-covered rigid or flexible substrates. Even more extraordinary is that these surface relief patterns can be further filled, in a more or less ordered fashion, with various functional nanomaterials and thus can lead to the realization of more complex structured architectures. These architectures can serve as multifunctional platforms for the design and the development of a multitude of novel, better performing nanotechnological applications. In this work, we aim to provide an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns. Our aim is to provide the readers with a toolbox of the most suitable patterning and deposition methodologies that could be easily identified and further combined when the fabrication of novel structured platforms exhibiting interesting properties is targeted.
Collapse
Affiliation(s)
- Madalina Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str. 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
| |
Collapse
|
18
|
Lee T, Lee C, Oh DK, Badloe T, Ok JG, Rho J. Scalable and High-Throughput Top-Down Manufacturing of Optical Metasurfaces. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4108. [PMID: 32718085 PMCID: PMC7435655 DOI: 10.3390/s20154108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
Metasurfaces have shown promising potential to miniaturize existing bulk optical components thanks to their extraordinary optical properties and ultra-thin, small, and lightweight footprints. However, the absence of proper manufacturing methods has been one of the main obstacles preventing the practical application of metasurfaces and commercialization. Although a variety of fabrication techniques have been used to produce optical metasurfaces, there are still no universal scalable and high-throughput manufacturing methods that meet the criteria for large-scale metasurfaces for device/product-level applications. The fundamentals and recent progress of the large area and high-throughput manufacturing methods are discussed with practical device applications. We systematically classify various top-down scalable patterning techniques for optical metasurfaces: firstly, optical and printing methods are categorized and then their conventional and unconventional (emerging/new) techniques are discussed in detail, respectively. In the end of each section, we also introduce the recent developments of metasurfaces realized by the corresponding fabrication methods.
Collapse
Affiliation(s)
- Taejun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (T.L.); (C.L.); (D.K.O.); (T.B.)
| | - Chihun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (T.L.); (C.L.); (D.K.O.); (T.B.)
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (T.L.); (C.L.); (D.K.O.); (T.B.)
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (T.L.); (C.L.); (D.K.O.); (T.B.)
| | - Jong G. Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (T.L.); (C.L.); (D.K.O.); (T.B.)
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|