1
|
Nallbani BG, Kahraman MV, Degirmenci I. Base-catalyzed thiol-epoxy reactions: Energetic and kinetic evaluations. J Mol Graph Model 2025; 135:108933. [PMID: 39721119 DOI: 10.1016/j.jmgm.2024.108933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The mechanism of the base-catalyzed thiol-epoxide stage of the thiol-ene/thiol-epoxide curing process was investigated using quantum chemical tools. This study searched for conventional tertiary amines with low to medium basicity as initiators to control reaction rates and tailor industrial applications. Challenges arise from the stronger basicity of initiators, leading to an uncontrollable and short curing application period. This problem was put into quantitative data through kinetic and energetic studies for the first time. Furthermore, the base catalyst formulation of curing agents distinctively has a short pot life. More reactivity of terminal epoxy rings than internal ones was highlighted for the curing agents. It was revealed that the reactivity augments during the curing process while environmental polarity changes from higher to lower, which is one of the reasons that triggers an autocatalytic phenomenon. Electronegative atoms like fluorine on thiols significantly decrease the nucleophilicity of formed thiolate anion, enabling longer curing application.
Collapse
Affiliation(s)
| | - Memet Vezir Kahraman
- Chemistry Department, Faculty of Science, Marmara University, 34722, Istanbul, Turkey
| | - Isa Degirmenci
- Chemical Engineering Department, Ondokuz Mayıs University, 55139, Samsun, Turkey.
| |
Collapse
|
2
|
Nallbani BG, Kahraman MV, Degirmenci I. Computational Study on Radical-Mediated Thiol-Epoxy Reactions. J Phys Chem A 2023; 127:8050-8058. [PMID: 37737119 DOI: 10.1021/acs.jpca.3c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Radical-mediated thiol-epoxy reactions were elucidated for analyzing the overlap problem of the thiol-ene/thiol-epoxy systems using computational approaches. Nine epoxy model molecules were evaluated to mimic the chemical structures and reactivity of some industrial epoxy molecules. Modeling reaction mechanisms was conducted through density functional theory (DFT) calculations using the M06-2X/6-31+G(d,p) level at 1.0 atm and 298.15 K. An analog thiol-ene mechanism was proposed for radical-mediated thiol-epoxide reactions. Unlike the thiol-ene reactions, the addition reaction to epoxides is relatively slow (rate constants <10-4 M-1 s-1). However, the chain transfer, which paves the way for the overlapping of dual curing systems, is quite fast (rate constants >101 M-1 s-1). High stability of thiyl radicals, epoxy ring strain, and the instability of formed alkoxy radical from addition reaction were emphasized as the main driving forces for the reaction energetics and kinetics. Control of temperature and using certain thiols are strongly recommended to avoid curing step overlap based on the findings in this study.
Collapse
Affiliation(s)
| | - Memet Vezir Kahraman
- Chemistry Department, Faculty of Science, Marmara University, 34722 Istanbul, Turkey
| | - Isa Degirmenci
- Chemical Engineering Department, Ondokuz Mayıs University, 55139 Samsun, Turkey
| |
Collapse
|
3
|
Imamura R, Oto K, Kataoka K, Takasu A. Synthesis and Biodegradability of Tartaric Acid-Based Poly(ester-thioether)s via Thiol-Ene Click Polymerization. ACS OMEGA 2023; 8:23358-23364. [PMID: 37426220 PMCID: PMC10324057 DOI: 10.1021/acsomega.2c07627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/04/2023] [Indexed: 07/11/2023]
Abstract
Using scandium triflate [Sc(OTf)3] as a catalyst, chemoselective esterification of tartaric acids by 3-butene-1-ol was performed, and we produced three dialkene monomers: l-di(3-butenyl) tartrate (BTA), d-BTA, and meso-BTA. Thiol-ene polyaddition of these dialkenyl tartrates and dithiols including 1,2-ethanedithiol (ED), ethylene bis(thioglycolate) (EBTG), and d,l-dithiothreitol (DTT) proceeded in toluene at 70 °C under nitrogen to give tartrate-containing poly(ester-thioether)s (Mn, (4.2-9.0) × 103; molecular weight distribution (Mw/Mn), 1.6-2.5). In differential scanning calorimetry, the poly(ester-thioether)s showed single Tgs between -25 and -8 °C. In biochemical oxygen demand (BOD) tests using activated sludge, poly(l-BTA-alt-EBTG) and poly(l-BTA-alt-ED) showed 32 and 8% biodegradability, which is comparable to that of similar l-malate-containing poly(ester-thioether)s (23 and 13% biodegradation, respectively). Notably, we observed enantio and diastereo effects on biodegradation because poly(l-BTA-alt-EBTG), poly(d-BTA-alt-EBTG), and poly(meso-BTA-alt- EBTG) showed different degradation behaviors during the biodegradation test (BOD/theoretical oxygen demand (TOD) values after 28 days, 32, 70, and 43%, respectively). Our findings provide insights into the design of biomass-based biodegradable polymers containing chiral centers.
Collapse
|
4
|
Hu J, Feng H, Rong Y, Wang S, Jin D, Chen Q, Dai J, Liu X. Recyclable bio‐based epoxy resins containing hybrid cross‐linking networks. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jingyuan Hu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Haoyang Feng
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Yangke Rong
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
- Key Laboratory of Marine Materials and Related Technologies Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province Ningbo People's Republic of China
| | - Shuaipeng Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
- Key Laboratory of Marine Materials and Related Technologies Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province Ningbo People's Republic of China
| | - Dandan Jin
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
- Key Laboratory of Marine Materials and Related Technologies Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province Ningbo People's Republic of China
| | - Qing Chen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Jinyue Dai
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
- Key Laboratory of Marine Materials and Related Technologies Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province Ningbo People's Republic of China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
- Key Laboratory of Marine Materials and Related Technologies Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province Ningbo People's Republic of China
| |
Collapse
|
5
|
Synthesis of network polymers by ring-opening addition reaction of multi-functional epoxy and dithiol compounds. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Guggenbiller G, Al Balushi A, Weems AC. Poly(β‐hydroxythioether)s as shape memory polymer foams for oil sorption in aquatic environments. J Appl Polym Sci 2022. [DOI: 10.1002/app.53569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Grant Guggenbiller
- Biomedical Engineering Program, Biomolecular and Chemical Engineering Department, Russ College of Engineering Ohio University Athens Ohio USA
| | - Ali Al Balushi
- Department of Mechanical Engineering, Russ College of Engineering Ohio University Athens Ohio USA
| | - Andrew C Weems
- Biomedical Engineering Program, Biomolecular and Chemical Engineering Department, Russ College of Engineering Ohio University Athens Ohio USA
- Department of Mechanical Engineering, Russ College of Engineering Ohio University Athens Ohio USA
- Ohio Musculoskeletal and Neurological Institute, and Center for Advanced Materials Processing, Russ College of Engineering Ohio University Athens Ohio USA
| |
Collapse
|
7
|
Huang Y, Li L, Liu X, Li Z. Photobase-catalysed anionic thiol-epoxy click photopolymerization under NIR irradiation: from deep curing to shape memory. Polym Chem 2022. [DOI: 10.1039/d2py00144f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A photobase generator absorbing upconversion fluorescence can efficiently catalyze anionic thiol-epoxy click photopolymerization under 980 nm NIR light irradiation.
Collapse
Affiliation(s)
- Yaoxin Huang
- School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, Guangdong, China
| | - Longji Li
- School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, Guangdong, China
| | - Xiaoxuan Liu
- School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province, 522000, PR China
| | - Zhiquan Li
- School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province, 522000, PR China
| |
Collapse
|
8
|
Reisinger D, Dietliker KP, Sangermano M, Schlögl S. Streamlined concept towards spatially resolved photoactivation of dynamic transesterification in vitrimeric polymers by applying thermally stable photolatent bases. Polym Chem 2022. [DOI: 10.1039/d1py01722e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through a well targeted design, vitrimers are able to reorganise their three-dimensional covalently crosslinked network structure by associative exchange reactions when the so-called topology freezing transition temperature (Tv) is exceeded....
Collapse
|
9
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
10
|
Reisinger D, Kaiser S, Rossegger E, Alabiso W, Rieger B, Schlögl S. Introduction of Photolatent Bases for Locally Controlling Dynamic Exchange Reactions in Thermo-Activated Vitrimers. Angew Chem Int Ed Engl 2021; 60:14302-14306. [PMID: 33929092 DOI: 10.1002/anie.202102946] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/17/2021] [Indexed: 12/16/2022]
Abstract
Vitrimers exhibit a covalently crosslinked network structure, as is characteristic of classic thermosetting polymers. However, they are capable of rearranging their network topology by thermo-activated associative exchange reactions when the topology freezing transition temperature (Tv ) is exceeded. Despite the vast number of developed vitrimers, there is a serious lack of methods that enable a (spatially) controlled onset of these rearrangement reactions above Tv . Herein, we highlight the localized release of the efficient transesterification catalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) by the UV-induced cleavage of a photolatent base within a covalently crosslinked thiol-epoxy network. Demonstrated with stress relaxation measurements conducted well above the network's Tv , only the controlled release of TBD facilitates the immediate onset of transesterification in terms of a viscoelastic flow. Moreover, the spatially resolved UV-mediated photoactivation of vitrimeric properties is confirmed by permanent shape changes induced locally in the material.
Collapse
Affiliation(s)
- David Reisinger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700, Leoben, Austria
- WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Simon Kaiser
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700, Leoben, Austria
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700, Leoben, Austria
| | - Walter Alabiso
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700, Leoben, Austria
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700, Leoben, Austria
| |
Collapse
|
11
|
Reisinger D, Kaiser S, Rossegger E, Alabiso W, Rieger B, Schlögl S. Einsatz photolatenter Basen zur lokalen Kontrolle dynamischer Austauschreaktionen in thermisch aktivierbaren Vitrimeren. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Reisinger
- Polymer Competence Center Leoben GmbH Roseggerstraße 12 8700 Leoben Österreich
- WACKER-Lehrstuhl für Makromolekulare Chemie Technische Universität München Lichtenbergstraße 4 85748 Garching Deutschland
| | - Simon Kaiser
- Polymer Competence Center Leoben GmbH Roseggerstraße 12 8700 Leoben Österreich
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH Roseggerstraße 12 8700 Leoben Österreich
| | - Walter Alabiso
- Polymer Competence Center Leoben GmbH Roseggerstraße 12 8700 Leoben Österreich
| | - Bernhard Rieger
- WACKER-Lehrstuhl für Makromolekulare Chemie Technische Universität München Lichtenbergstraße 4 85748 Garching Deutschland
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH Roseggerstraße 12 8700 Leoben Österreich
| |
Collapse
|
12
|
King O, Constant E, Weems AC. Shape Memory Poly(β-hydroxythioether) Foams for Oil Remediation in Aquatic Environments. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20641-20652. [PMID: 33872493 DOI: 10.1021/acsami.1c02630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape memory poly(β-hydroxythioether) foams were produced using organobase catalyzed reactions between epoxide and thiol monomers, allowing for the rapid formation of porous media within approximately 5 min, confirmed using both rheology and physical foam blowing. The porous materials possess ultralow densities (0.022 g × cm-3) and gel fractions of approximately 93%. Thermomechanical characterizations of the materials revealed glass transition temperatures tunable from approximately 50 to 100 °C, elastic moduli of approximately 2 kPa, and complete strain recovery upon heating of the sample above its glass transition temperature. The foams were characterized for their ability to take up oil from an aqueous multilayered ideal environment, revealing more than 2000% mass of oil (relative to the foam mass) could be collected. Importantly, while post-fabrication functionalization was possible with isocyanate chemistry followed by addition of hexadecanethiol or 3,3-bis(hexadecylthio)propan-1-ol, the oil collection efficiency of the system was not significantly enhanced, indicating that these materials, as porous media, possess unique attributes that make them appealing for environmental remediation without the need for costly modifications or manipulations.
Collapse
Affiliation(s)
- Olivia King
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Eric Constant
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Andrew C Weems
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
- Department of Mechanical Engineering; Translational Biosciences; Molecular and Chemical Biology; Orthopedic and Musculoskeletal Neurological Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|