1
|
Hossain MZ, Nayem SMA, Alam MS, Islam MI, Seong G, Chowdhury AN. Hydrothermal ZnO Nanomaterials: Tailored Properties and Infinite Possibilities. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:609. [PMID: 40278474 PMCID: PMC12029495 DOI: 10.3390/nano15080609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
This review presents a comprehensive and precise summary of the hydrothermal synthesis and morphology control of zinc oxide (ZnO) nanomaterials, the advantages of hydrothermal synthesis, and the wide range of applications. ZnO nanomaterials have garnered significant attention in recent years for their diverse applications across various industries owing to their unique properties and versatility, with practical applications in healthcare, cosmetics, textiles, automotive, and other sectors. Specifically, the ability of ZnO-based nanomaterials to promote the production of reactive oxygen species, release of Zn2+ ions, and induce cell apoptosis makes them well-suited for bio-medicinal applications such as cancer treatment and microorganism control. Hydrothermal technique offers precise control over the synthesis of ZnO, metal/non-metal-doped ZnO, and related composites, enabling the tailoring of properties for specific applications. The significant feature of the hydrothermal technique is the use of water as a solvent, which is cheap, available, and environmentally benign. In the last section, we discussed the potential future direction of ZnO-based research.
Collapse
Affiliation(s)
- Muhammad Zamir Hossain
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (M.S.A.); (M.I.I.)
| | - S. M. Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (M.S.A.); (M.I.I.)
| | - Md. Shah Alam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (M.S.A.); (M.I.I.)
| | - Md. Imran Islam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (M.S.A.); (M.I.I.)
| | - Gimyeong Seong
- Department of Environmental and Energy Engineering, The University of Suwon, 17, Wauan-gil, Bongdam-eup, Hwaseong-si 18323, Republic of Korea
| | - Al-Nakib Chowdhury
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh;
| |
Collapse
|
2
|
Khan M, Ahmed MM, Akhtar MN, Sajid M, Riaz NN, Asif M, Kashif M, Shabbir B, Ahmad K, Saeed M, Shafiq M, Shabir T. Fabrication of CuWO 4@MIL-101 (Fe) nanocomposite for efficient OER and photodegradation of methylene blue. Heliyon 2024; 10:e40546. [PMID: 39654752 PMCID: PMC11626014 DOI: 10.1016/j.heliyon.2024.e40546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/23/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
The development of an efficient catalyst to meet the world's increasing energy demand and eliminate organic pollutants in water, is a concern of current researchers. In this article, a highly effective composite has been synthesized using the solvothermal approach, by incorporating CuWO4 nanoparticles into Fe-based MOF, Fe (BDC). The synthesized samples were analyzed further by some characterization techniques such as X-ray diffraction, Fourier transform infrared spectroscope (FTIR) and scanning electron microscopy. The highest catalytic activity for the oxygen evolution reaction was observed in the CuWO4@MIL-101(Fe) composite, which exhibited low overpotential 188 mV to obtained the current density of 10 mA cm-2, and a smaller Tafel slope of 40 mV dec-1. The nanocomposite CuWO4@MIL-101(Fe) material showed enhanced visible light absorption and maximum degradation of methylene blue up to 96.92 %. It has been found that this research promotes the development of an efficient MOF-based catalyst for OER and photocatalytic technology.
Collapse
Affiliation(s)
- Mariam Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
- Department of Chemistry, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | | | | | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Nagina Naveed Riaz
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Muhammad Asif
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, Emerson University, Multan, Pakistan
| | - Bushra Shabbir
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Khalil Ahmad
- Department of Chemistry, University of Management and Technology: Lahore, Sialkot Campus, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences, Pakistan
| | - Maryam Shafiq
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Tayyaba Shabir
- Department of Chemistry, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| |
Collapse
|
3
|
Machín A, Cotto MC, Márquez F, Díaz-Sánchez J, Polop C, Morant C. Hydrogen Production and Li-Ion Battery Performance with MoS 2-SiNWs-SWNTs@ZnONPs Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1911. [PMID: 39683299 DOI: 10.3390/nano14231911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024]
Abstract
This study explores the hydrogen generation potential via water-splitting reactions under UV-vis radiation by using a synergistic assembly of ZnO nanoparticles integrated with MoS2, single-walled carbon nanotubes (SWNTs), and crystalline silicon nanowires (SiNWs) to create the MoS2-SiNWs-SWNTs@ZnONPs nanocomposites. A comparative analysis of MoS2 synthesized through chemical and physical exfoliation methods revealed that the chemically exfoliated MoS2 exhibited superior performance, thereby being selected for all subsequent measurements. The nanostructured materials demonstrated exceptional surface characteristics, with specific surface areas exceeding 300 m2 g-1. Notably, the hydrogen production rate achieved by a composite comprising 5% MoS2, 1.7% SiNWs, and 13.3% SWNTs at an 80% ZnONPs base was approximately 3909 µmol h-1g-1 under 500 nm wavelength radiation, marking a significant improvement of over 40-fold relative to pristine ZnONPs. This enhancement underscores the remarkable photocatalytic efficiency of the composites, maintaining high hydrogen production rates above 1500 µmol h-1g-1 even under radiation wavelengths exceeding 600 nm. Furthermore, the potential of these composites for energy storage and conversion applications, specifically within rechargeable lithium-ion batteries, was investigated. Composites, similar to those utilized for hydrogen production but excluding ZnONPs to address its limited theoretical capacity and electrical conductivity, were developed. The focus was on utilizing MoS2, SiNWs, and SWNTs as anode materials for Li-ion batteries. This strategic combination significantly improved the electronic conductivity and mechanical stability of the composite. Specifically, the composite with 56% MoS2, 24% SiNWs, and 20% SWNTs offered remarkable cyclic performance with high specific capacity values, achieving a complete stability of 1000 mA h g-1 after 100 cycles at 1 A g-1. These results illuminate the dual utility of the composites, not only as innovative catalysts for hydrogen production but also as advanced materials for energy storage technologies, showcasing their potential in contributing to sustainable energy solutions.
Collapse
Affiliation(s)
- Abniel Machín
- Division of Natural Sciences and Technology, Universidad Ana G. Méndez-Cupey Campus, San Juan, PR 00926, USA
| | - María C Cotto
- Nanomaterials Research Group, School of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| | - Francisco Márquez
- Nanomaterials Research Group, School of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| | - Jesús Díaz-Sánchez
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Celia Polop
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carmen Morant
- Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Applied Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
4
|
Subagyo R, Diakana AR, Anindika GR, Akhlus S, Juwono H, Zhang L, Arramel, Kusumawati Y. Modification of Sugar Cane Bagasse with CTAB and ZnO for Methyl Orange and Methylene Blue Removal. ACS OMEGA 2024; 9:25251-25264. [PMID: 38882161 PMCID: PMC11170691 DOI: 10.1021/acsomega.4c02938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Sugar cane bagasse (SB) was modified with cetyltrimethylammonium bromide (CTAB), followed by impregnation with zinc oxide (ZnO) to create a synergistic adsorption and photocatalytic system for methyl orange (MO) and methylene blue (MB) removal. The presence of CTAB and ZnO was confirmed by X-ray diffraction, Fourier transform infrared, and energy dispersive X-ray (for Zn and O). Modification of SB with CTAB (CSB) generated more positive sites on the surface of SB, which enhanced MO removal compared with that of pristine SB. ZnO impregnation induces a decrease in MO removal due to the ZnO presence on the CSB surface, which might reduce the positive sites on the CSB. In addition, the positive sites on CSB can interact with Zn2+ and O2- to form ZnO and lead to a decrease in MO removal. In contrast, the presence of ZnO facilitated good removal of MB compared to CSB, indicating that the photocatalytic process plays a greater role in removing MB. However, the addition of H2O2 can improve MO and MB removal under irradiation due to the formation of external •OH. The photocatalytic performance of MO and MB was also observed to be favored under acidic and alkaline conditions, respectively.
Collapse
Affiliation(s)
- Riki Subagyo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, Surabaya, Sukolilo 60111, Indonesia
| | - Achmad R Diakana
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, Surabaya, Sukolilo 60111, Indonesia
| | - Garcelina R Anindika
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, Surabaya, Sukolilo 60111, Indonesia
| | - Syafsir Akhlus
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, Surabaya, Sukolilo 60111, Indonesia
| | - Hendro Juwono
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, Surabaya, Sukolilo 60111, Indonesia
| | - Lei Zhang
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Arramel
- Center of Excellence Applied Physics and Chemistry, Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, Surabaya, Sukolilo 60111, Indonesia
| |
Collapse
|
5
|
Pompapathi K, Anantharaju KS, Karuppasamy P, Subramaniam M, Uma B, Boppanahalli Siddegowda S, Paul Chowdhury A, Murthy HCA. Visible-Light-Driven Mentha spicata L.-Mediated Ag-Doped Bi 2Zr 2O 7 Nanocomposite for Enhanced Degradation of Organic Pollutants, Electrochemical Sensing, and Antibacterial Applications. ACS ENVIRONMENTAL AU 2024; 4:106-125. [PMID: 38525021 PMCID: PMC10958660 DOI: 10.1021/acsenvironau.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/26/2024]
Abstract
Novel visible-light-driven Ag (X)-doped Bi2Zr2O7 (BZO) nanocomposites in pudina (P) extract (Mentha spicata L.), X-1, 3, 5, 7, and 9 mol %, were synthesized by the one-pot greener solution combustion method. The as-synthesized nanocomposite materials were characterized by using various spectral [X-ray diffraction (XRD), Fourier transform infrared, UV-visible, UV- diffuse reflectance spectra, X-ray photoelectron spectroscopy], electrochemical (cyclic voltammetry, electrochemical impedance spectroscopy), and analytical (scanning electron microscopy-energy-dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller) techniques. The average particle size of the nanocomposite material was found to be between 14.8 and 39.2 nm by XRD. The well-characterized Ag-doped BZOP nanocomposite materials exhibited enhanced photocatalytic degradation activity toward hazardous dyes such as methylene blue (MB) and rose bengal (RB) under visible light irradiation ranges between 400 and 800 nm due to their low energy band gap. As a result, 7 mol % of Ag-doped BZOP nanocomposite material exhibited excellent photodegradation activity against MB (D.E. = 98.7%) and RB (D.E. = 99.3%) as compared to other Ag-doped BZOP nanocomposite materials and pure BZOP nanocomposite, respectively, due to enhanced semiconducting and optical behaviors, high binding energy, and mechanical and thermal stabilities. The Ag-doped BZOP nanocomposite material-based electrochemical sensor showed good sensing ability toward the determination of lead nitrate and dextrose with the lowest limit of detection (LOD) of 18 μM and 12 μM, respectively. Furthermore, as a result of the initial antibacterial screening study, the Ag-doped BZOP nanocomposite material was found to be more effective against Gram-negative bacteria (Escherichia coli) as compared to Gram-positive (Staphylococcus aureus) bacteria. The scavenger study reveals that radicals such as O2•- and •OH are responsible for MB and RB mineralization. TOC removal percentages were found to be 96.8 and 98.5% for MB and RB dyes, and experimental data reveal that the Ag-doped BZOP enhances the radical (O2•- and •OH) formation and MB and RB degradation under visible-light irradiation.
Collapse
Affiliation(s)
- Kurlla Pompapathi
- Dr.
D. Premachandra Sagar Centre for Advanced Materials, Dayananda Sagar College of Engineering, Bangalore 560078, India
- Department
of Material Science, Mangalore University, Mangalore, Karnataka 574199, India
| | - Kurupalya Shivram Anantharaju
- Dr.
D. Premachandra Sagar Centre for Advanced Materials, Dayananda Sagar College of Engineering, Bangalore 560078, India
- Department
of Chemistry, Dayananda Sagar College of
Engineering, Bangalore 560078, India
| | | | - Meena Subramaniam
- Department
of Chemistry, Dayananda Sagar College of
Engineering, Bangalore 560078, India
| | - Bogegowda Uma
- Department
of Chemistry, Dayananda Sagar College of
Engineering, Bangalore 560078, India
| | | | - Arpita Paul Chowdhury
- Department
of Chemistry, Dayananda Sagar College of
Engineering, Bangalore 560078, India
| | - H. C. Ananda Murthy
- Department
of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama 1888, Ethiopia
- Department
of Prosthodontics, Saveetha Dental College & Hospital, Saveetha
Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, Tamil Nadu 600077, India
| |
Collapse
|
6
|
Machín A, Morant C, Soto-Vázquez L, Resto E, Ducongé J, Cotto M, Berríos-Rolón PJ, Martínez-Perales C, Márquez F. Synergistic Effects of Co 3O 4-gC 3N 4-Coated ZnO Nanoparticles: A Novel Approach for Enhanced Photocatalytic Degradation of Ciprofloxacin and Hydrogen Evolution via Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1059. [PMID: 38473530 DOI: 10.3390/ma17051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
This research evaluates the efficacy of catalysts based on Co3O4-gC3N4@ZnONPs in the degradation of ciprofloxacin (CFX) and the photocatalytic production of H2 through water splitting. The results show that CFX experiences prompt photodegradation, with rates reaching up to 99% within 60 min. Notably, the 5% (Co3O4-gC3N4)@ZnONPs emerged as the most potent catalyst. The recyclability studies of the catalyst revealed a minimal activity loss, approximately 6%, after 15 usage cycles. Using gas chromatography-mass spectrometry (GC-MS) techniques, the by-products of CFX photodegradation were identified, which enabled the determination of the potential degradation pathway and its resultant products. Comprehensive assessments involving photoluminescence, bandgap evaluations, and the study of scavenger reactions revealed a degradation mechanism driven primarily by superoxide radicals. Moreover, the catalysts demonstrated robust performance in H2 photocatalytic production, with some achieving outputs as high as 1407 µmol/hg in the visible spectrum (around 500 nm). Such findings underline the potential of these materials in environmental endeavors, targeting both water purification from organic pollutants and energy applications.
Collapse
Affiliation(s)
- Abniel Machín
- Environmental Catalysis Research Lab, Division of Science, Technology and Environment, Cupey Campus, Universidad Ana G. Méndez, Cupey, PR 00926, USA
| | - Carmen Morant
- Department of Applied Physics, Autonomous University of Madrid, and Instituto de Ciencia de Materiales Nicolás Cabrera, 28049 Madrid, Spain
| | - Loraine Soto-Vázquez
- Materials Characterization Center Inc., Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Edgard Resto
- Materials Characterization Center Inc., Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - José Ducongé
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| | - María Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| | - Pedro J Berríos-Rolón
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| | - Cristian Martínez-Perales
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| |
Collapse
|
7
|
Demarema S, Nasr M, Ookawara S, Abdelhaleem A. Enhanced synergistic system for the persulfate activation under visible light using novel N-ZnO photocatalyst supported on Lantana camara-based biochar. CHEMOSPHERE 2024; 349:140840. [PMID: 38042420 DOI: 10.1016/j.chemosphere.2023.140840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Herein, a novel nitrogen-doped ZnO photocatalyst supported on biochar (N-ZnO@LBC) was synthesized using the Lantana camera as a green source of biochar. The synthesized photocatalyst was applied as an activator of persulfate (PS) for the photodegradation of methylene blue (MB) under visible light irradiation. The properties of the synthesized photocatalyst were explored before and after photocatalysis using different characterization analyses. The results revealed that the nitrogen doping of ZnO@LBC could reduce the band gap energy from 2.83 eV to 2.78 eV resulting in higher activity under visible light. The synergetic effect of the N-ZnO@LBC/PS/visible process was investigated under various reaction conditions. Surprisingly, about 95.7% of MB photodegradation could be achieved using N-ZnO@LBC/PS/visible process under optimal conditions. Moreover, a prediction model with an excellent correlation between the actual and predicted data (R2 = 0.9844) was established to forecast MB removal. Interestingly, the scavenging tests exhibited that various reactive species could induce MB degradation in an order of O2-• > h+ > SO4-• >•OH with the highest contribution of O2-•. Additionally, the presence of functional hydroxyl groups in the N-ZnO@LBC structure could lead to the generation of additional radicals as confirmed by FT-IR analysis after photocatalysis. The reusability test showed that the photocatalyst could be reused for up to five cycles without a significant loss in the photocatalytic activity indicating its high stability. The cost of wastewater treatment by N-ZnO@LBC/PS/Visible process was estimated to be US$ 9.79/m3 based on an economic analysis. It worth mentioning that the proposed process was investigated for the degradation of other dyes including Congo red (CR) and methyl orange (MO) and the efficiencies were 65.41% and 59.23% for CR and MO, respectively. Overall, the proposed process could be a promising and cost-effective approach for the degradation of various dyes in real applications.
Collapse
Affiliation(s)
- Samuel Demarema
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt; Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Shinichi Ookawara
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro- Ku, Tokyo, 152-8552, Japan
| | - Amal Abdelhaleem
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt.
| |
Collapse
|
8
|
Oluseun Akintunde O, Hu J, Golam Kibria M, Pogosian S, Achari G. A facile synthesis process of GCN/ZnO-Cu nanocomposite and the evaluation of the performance for the photocatalytic degradation of organic pollutants and the disinfection of wastewater under visible light. CHEMOSPHERE 2023; 344:140287. [PMID: 37820879 DOI: 10.1016/j.chemosphere.2023.140287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
In this research, graphitic carbon nitride/zinc oxide-copper denoted as GCN/ZnO-Cu nanocomposite photocatalysts were synthesized using a novel facile synthesis process, the co-exfoliation method involving ultrasonic exfoliation of the mixture of GCN and ZnO-Cu in ethanol and then thermal exfoliation. Different characterization techniques such as X-ray diffraction (XRD), mean crystallite size (MCS), BET surface area, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), particle size distribution (PSD), Fourier transform-infrared spectroscopy (FT-IR), photoluminescence (PL) spectra, and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) were conducted to study the crystallinity, morphology, elemental composition, chemical structure, and optoelectronic properties. The band gap was estimated using the UV-Vis DRS results and Tauc plots. The photocatalytic activity of the GCN/ZnO-Cu3% nanocomposites was evaluated in the degradation of 4-chlorophenol (4-CP), and the disinfection of wastewater primary influent under a narrowband visible light source, royal blue LED (λ = 450 nm). GCN/0.1ZnO-Cu3% nanocomposite showed the best performance in the degradation of 4-CP and the disinfection of municipal wastewater primary influent. For 4-CP degradation, GCN/0.1ZnO-Cu3% was 2.2 times better than GCN, 9.4 times better than ZnO-Cu3%, and 1.8 times better than the sum of the individual GCN and ZnO-Cu3%. A 5.5 log reduction was achieved for the disinfection of total coliforms in wastewater primary influent in 360 min. This enhanced photocatalytic activity of GCN/ZnO-Cu3% nanocomposite can be attributed to the synergistic of GCN and the ZnO-Cu3%, resulting in a large surface area and improved bandgap.
Collapse
Affiliation(s)
- Olufemi Oluseun Akintunde
- Department of Civil Engineering, University of Calgary, ENE 231, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, ENB 202, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, ENB 202, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Samuel Pogosian
- Nemalux Industrial, 1018 72 Ave NE, Calgary, AB, T2E 8V9, Canada
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, ENE 231, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
9
|
Murugan S, Ashokkumar M, Sakthivel P, Choi D. Sulfur deficiency mediated visible emission of ZnS QDs by magnesium dopant and their application in waste water treatment. Heliyon 2023; 9:e17947. [PMID: 37496904 PMCID: PMC10366396 DOI: 10.1016/j.heliyon.2023.e17947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
The photocatalyst with antimicrobial activity serves as a better candidate material for wastewater treatment, as wastewater contains microbes, hazardous dyes, and heavy metals. Hence, the present study extensively examines the photocatalytic and antibacterial activities against two waterborne bacterial strains, namely Salmonella typhi and Escherichia coli. Pure and Mg-doped ZnS (Mg:ZnS) quantum dots (QDs) were synthesized using a low-cost and simple co-precipitation method. The QDs' structural, surface morphology, chemical purity, and optical characteristics were analyzed through XRD, SEM, EDAX, TEM, UV-visible, and photoluminescence spectra. The incorporation of Mg dopants did not introduce significant alterations to the cubic blende structure of ZnS, nor did it induce substantial changes in the structural parameters. However, the QDs exhibited a slight sulfur deficiency, which was further increased by the presence of Mg dopant. The Mg dopant, due to its dominant compositional effect, reduced the band gap. Several optical emission bands were observed in the UV, violet, blue, and green regions, corresponding to NBE emission, sulfur-related defects, and Zn-related defects. Initially, Mg doping enhanced visible emission related to defects, while NBE emission was suppressed by the Mg dopant. However, increasing the concentration of the Mg dopant led to a slight increase in NBE emission. The Mg dopant enhanced the photocatalytic activity of the QDs, and a strong correlation was found between photocatalytic activity and NBE emission. The presence of the Mg dopant led to an increased rate of ROS-based decolorization by reducing the electron-hole recombination rate.
Collapse
Affiliation(s)
- S. Murugan
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai - 602 105, India
| | - M. Ashokkumar
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai - 602 105, India
| | - P. Sakthivel
- Centre for Materials Science, Department of Physics, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore - 641 021, Tamil Nadu, India
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong-ro,Jochiwon-eup, Sejong-city, 30016, South Korea
| |
Collapse
|
10
|
Rajesh C, Rajashekara R, Nagaraju P. Response Surface Methodology (RSM) modelling for the photocatalytic optimization study of benzophenone removal using CuWO 4/NiO nanocomposite. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:187-199. [PMID: 37159730 PMCID: PMC10163199 DOI: 10.1007/s40201-023-00852-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/25/2023] [Indexed: 05/11/2023]
Abstract
Emerging contaminants are posing a new water quality challenge, worldwide. The majority of pharmaceutical and personal care products used by us have been regarded as emerging contaminants. Benzophenone is one such chemical found in personal care products, specially in sunscreen creams as an UV-filter. Copper tungstate/nickel oxide (CuWO4/NiO) nanocomposite with visible (LED) light irradiation has been investigated in degradation of benzophenone, in the present study. The co-precipitation approach was used to produce the aforementioned nanocomposite. XRD, FTIR, FESEM, EDX, Zeta potential, and UV-Vis spectroscopy illustrated the structure, morphology, and other catalytic features. Response surface methodology (RSM) was used to optimize and simulate the photodegradation of benzophenone. Herein, catalyst dose, pH, initial pollutant concentration, and contact time were considered as the independent factor in the design of experiment (DoE) using RSM with percentage degradation as the dependent factor or as a response. The CuWO4/NiO nanocomposite demonstrated high photocatalytic performance of 91.93% at pH = 11 with a pollutant concentration of 0.5 mg/L and a catalyst dose of 5 mg within 8 h under ideal circumstances. The RSM model was determined to be the most convincible with an R2 value of 0.99 and a probability value (P-value) of 0.0033, respectively, with a agreeable projected and actual values. As a result, it is envisioned that this study may provide new avenue for developing a strategy to target such emerging contaminants.
Collapse
Affiliation(s)
- Chethan Rajesh
- Department of Environmental Science, School of Life Sciences, Mysuru, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| | - Rakshitha Rajashekara
- Department of Environmental Science, School of Life Sciences, Mysuru, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| | - Pallavi Nagaraju
- Department of Environmental Science, School of Life Sciences, Mysuru, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| |
Collapse
|
11
|
Niu Q, Chen Q, Huang G, Li L, He Y, Bi J. Build-in electric field in CuWO 4/covalent organic frameworks S-scheme photocatalysts steer boosting charge transfer for photocatalytic CO 2 reduction. J Colloid Interface Sci 2023; 643:102-114. [PMID: 37054545 DOI: 10.1016/j.jcis.2023.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Covalent organic frameworks (COFs) are crystalline porous materials with enormous potential for realizing solar-driven CO2-to-fuel conversion, yet the sluggish transfer/separation of photoinduced electrons and holes remains a compelling challenge. Herein, a step (S)-scheme heterojunction photocatalyst (CuWO4-COF) was rationally fabricated by a thermal annealing method for boosting CO2 conversion to CO. The optimal CuWO4/COF composite sample, integrating 10 wt% CuWO4 with an olefin (C═C) linked COF (TTCOF), achieved a remarkable gas-solid phase CO yield as high as 7.17 ± 0.35 μmol g-1h-1 under visible light irradiation, which was significantly higher than the pure COF (1.6 ± 0.29 μmol g-1h-1). The enhanced CO2 conversion rate could be attributable to the interface engineering effect and the formation of internal electric field (IEF) directing from TTCOF to CuWO4 according to the theoretical calculation and experimental results, which also proves the electrons transfer from TTCOF to CuWO4 upon hybridization. In addition, driven by the IEF, the photoinduced electrons can be steered from CuWO4 to TTCOF under visible light irradiation as well-elucidated by in-situ irradiated X-ray photoelectron spectroscopy, verifying the S-scheme charge transfer pathway over CuWO4/COF composite heterojunctions, which greatly foster the photoreduction activity of CO2. The preparation technique of the S-scheme heterojunction photocatalyst in this study provides a paradigmatic protocol for photocatalytic solar fuel generation.
Collapse
Affiliation(s)
- Qing Niu
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China; Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Qiaoshan Chen
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China.
| | - Liuyi Li
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Yunhui He
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Minhou, Fujian 350108, PR China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, PR China.
| |
Collapse
|
12
|
Photodegradation of Ciprofloxacin and Levofloxacin by Au@ZnONPs-MoS2-rGO Nanocomposites. Catalysts 2023. [DOI: 10.3390/catal13030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
This study aimed to investigate the photocatalytic performance of diverse zinc oxide catalysts containing gold nanoparticles (AuNPs), molybdenum disulfide (MoS2), and reduced graphene oxide (rGO) toward the degradation of the antibiotics levofloxacin (LFX) and ciprofloxacin (CFX) in aqueous solutions. The obtained results demonstrate that LFX is more resistant to degradation when compared with CFX and that the principal route of degradation under visible light is the formation of hydroxyl radicals. Photoluminescence (PL) measurements were employed to verify the inhibitory effect of electron–hole recombination when AuNPs, MoS2, and rGO are integrated into a semiconductor. The catalyst that achieved the highest percentage of CFX degradation was 1%Au@ZnONPs-3%MoS2-1%rGO, exhibiting a degradation efficiency of 96%, while the catalyst that exhibited the highest percentage of LFX degradation was 5%Au@ZnONPs-3%MoS2-1%rGO, displaying a degradation efficiency of 99.8%. A gas chromatography–mass spectrometry (GC-MS) analysis enabled the identification of reaction intermediates, facilitating the determination of a potential degradation pathway for both antibiotics. Additionally, recyclability assessments showed that the synthesized catalysts maintained stable photocatalytic efficiencies after 15 cycles, indicating that the heterostructures have the potential for further usage and may be tested with other organic contaminants as well.
Collapse
|
13
|
Zulfa LL, Ediati R, Hidayat ARP, Subagyo R, Faaizatunnisa N, Kusumawati Y, Hartanto D, Widiastuti N, Utomo WP, Santoso M. Synergistic effect of modified pore and heterojunction of MOF-derived α-Fe 2O 3/ZnO for superior photocatalytic degradation of methylene blue. RSC Adv 2023; 13:3818-3834. [PMID: 36756550 PMCID: PMC9890639 DOI: 10.1039/d2ra07946a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023] Open
Abstract
Mesoporous heterojunction MOF-derived α-Fe2O3/ZnO composites were prepared by a simple calcination of α-Fe2O3/ZIF-8 as a sacrificial template. The optical properties confirm that coupling of both the modified pore and the n-n heterojunction effectively reduces the possibility of photoinduced charge carrier recombination under irradiation. The mesoporous Fe(25)ZnO with 25% loading of α-Fe2O3 exhibited the best performance in MB degradation, up to ∼100% after 150 minutes irradiation, higher than that of pristine ZnO and α-Fe2O3. Furthermore, after three cycles reusability, mesoporous Fe(25)ZnO still showed an excellent stability performance of up to 95.42% for degradation of MB. The proposed photocatalytic mechanism of mesoporous Fe(25)ZnO for the degradation of MB corresponds to the n-n heterojunction system. This study provides a valuable reference for preparing mesoporous MOF-derived metal oxides with an n-n heterojunction system to enhance MB photodegradation.
Collapse
Affiliation(s)
- Liyana Labiba Zulfa
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Ratna Ediati
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | | | - Riki Subagyo
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Nuhaa Faaizatunnisa
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Djoko Hartanto
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Nurul Widiastuti
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| | - Wahyu Prasetyo Utomo
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia .,School of Energy and Environment, City University of Hong Kong Hong Kong 999077 China
| | - Mardi Santoso
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember Surabaya 60111 Indonesia
| |
Collapse
|
14
|
Bhosale A, Kadam J, Gade T, Sonawane K, Garadkar K. Efficient photodegradation of methyl orange and bactericidal activity of Ag doped ZnO nanoparticles. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Liu Y, Chen L, Zhu X, Qiu H, Wang K, Li W, Cao S, Zhang T, Cai Y, Wu Q, Li J. Effects of operating temperature on photoelectrochemical performance of CuWO4 film photoanode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M. In Situ Synthesis of a Bismuth Vanadate/Molybdenum Disulfide Composite: An Electrochemical Tool for 3-Nitro-l-Tyrosine Analysis. Inorg Chem 2022; 61:14046-14057. [PMID: 35998644 DOI: 10.1021/acs.inorgchem.2c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quantification of 3-nitro-l-tyrosine (NO2-Tyr), an in vivo biomarker of nitrosative stress, is indispensable for the clinical intervention of various inflammatory disorders caused by nitrosative stress. By integrating the unique features of BiVO4 and MoS2 with matching bandgap energies, electrode materials with amplified response signals can be developed. In this regard, we introduce a hydrothermally synthesized bismuth vanadate sheathed molybdenum disulfide (MoS2@BiVO4) heterojunction as a highly sensitive electrode material for the determination of NO2-Tyr. Excellent electrochemical behavior perceived for the MoS2@BiVO4 augments the performance of the sensor and allows the measurement of NO2-Tyr in biological media without any time-consuming pretreatments. The synergistic interactions between BiVO4 and MoS2 heterojunctions contribute to low resistance charge transfer (Rct = 159.13 Ω·cm2), a reduction potential Epc = -0.58 V (vs Ag/AgCl), and a good response range (0.001-526.3 μM) with a lower limit of detection (0.94 nM) toward the detection of NO2-Tyr. An improved active surface area, reduced charge recombination, and high analyte adsorption contribute to the high loading of the biomarker for improved selectivity (in the presence of 10 interfering compounds), operational stability (1000 s), and reproducibility (six various modified electrodes). The proposed sensor was successfully utilized for the real-time determination of NO2-Tyr in water, urine, and saliva samples with good recovery values (±98.94-99.98%), ascertaining the reliability of the method. It is noteworthy that the electrochemical activity remains unaffected by other redox interferons, thus leading to targeted sensing applications.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India.,Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala 673592, India
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| |
Collapse
|
17
|
Synthesis of Novel Nanostructured Copper Tungstate/GCE Electrochemical System in Deep Eutectic Solvent medium for Simultaneous Detection of Dopamine and Paracetamol. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Megala S, Silambarasan A, Kanagesan S, Selvaraj M, Maadeswaran P, Ramesh R, Alam MM, Assiri MA. Interfacial coupling of CuWO4 nanoparticles on NiAl LDH as a novel photoctalyst for dissolved organic dye degradation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Photocatalytic Degradation of Fluoroquinolone Antibiotics in Solution by Au@ZnO-rGO-gC3N4 Composites. Catalysts 2022. [DOI: 10.3390/catal12020166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The photocatalytic degradation of two quinolone-type antibiotics (ciprofloxacin and levofloxacin) in aqueous solution was studied, using catalysts based on ZnO nanoparticles, which were synthesized by a thermal procedure. The efficiency of ZnO was subsequently optimized by incorporating different co-catalysts of gC3N4, reduced graphene oxide, and nanoparticles of gold. The catalysts were fully characterized by electron microscopy (TEM and SEM), XPS, XRD, Raman, and BET surface area. The most efficient catalyst was 10%Au@ZnONPs-3%rGO-3%gC3N4, obtaining degradations of both pollutants above 96%. This catalyst has the largest specific area, and its activity was related to a synergistic effect, involving factors such as the surface of the material and the ability to absorb radiation in the visible region, mainly produced by the incorporation of rGO and gC3N4 in the semiconductor. The use of different scavengers during the catalytic process, was used to establish the possible photodegradation mechanism of both antibiotics.
Collapse
|
20
|
Kumar N, Haviar S, Zeman P. Three-Layer PdO/CuWO 4/CuO System for Hydrogen Gas Sensing with Reduced Humidity Interference. NANOMATERIALS 2021; 11:nano11123456. [PMID: 34947809 PMCID: PMC8704960 DOI: 10.3390/nano11123456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023]
Abstract
The growing hydrogen industry is stimulating an ongoing search for new materials not only for hydrogen production or storage but also for hydrogen sensing. These materials have to be sensitive to hydrogen, but additionally, their synthesis should be compatible with the microcircuit industry to enable seamless integration into various devices. In addition, the interference of air humidity remains an issue for hydrogen sensing materials. We approach these challenges using conventional reactive sputter deposition. Using three consequential processes, we synthesized multilayer structures. A basic two-layer system composed of a base layer of cupric oxide (CuO) overlayered with a nanostructured copper tungstate (CuWO4) exhibits higher sensitivity than individual materials. This is explained by the formation of microscopic heterojunctions. The addition of a third layer of palladium oxide (PdO) in forms of thin film and particles resulted in a reduction in humidity interference. As a result, a sensing three-layer system working at 150 °C with an equalized response in dry/humid air was developed.
Collapse
|
21
|
de Almeida JC, Corrêa MT, Koga RH, Del Duque DMS, Lopes OF, da Silva GTST, Ribeiro C, de Mendonça VR. Crystallization time in ZnO: the role of surface OH groups in its photoactivity. NEW J CHEM 2020. [DOI: 10.1039/d0nj03239e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The crystallization time and surface modifications concerning the hydroxyl groups on the ZnO catalyst were studied and the results suggest that there is a balance between the surface groups and morphology playing a critical role in its photoactivity.
Collapse
Affiliation(s)
- Jéssica C. de Almeida
- Federal University of São Carlos
- Science and Technology Center for Sustainability
- Sorocaba
- Brazil
| | - Mateus T. Corrêa
- Federal University of São Carlos
- Science and Technology Center for Sustainability
- Sorocaba
- Brazil
| | - Rafaella H. Koga
- Federal Institute of Education, Science, and Technology of São Paulo – IFSP Campus Itapetininga
- Itapetininga
- Brazil
| | - Douglas M. S. Del Duque
- Federal Institute of Education, Science, and Technology of São Paulo – IFSP Campus Itapetininga
- Itapetininga
- Brazil
| | - Osmando F. Lopes
- Laboratory of Photochemistry and Materials Science
- Federal University of Uberlândia
- Institute of Chemistry
- Uberlândia
- Brazil
| | - Gelson T. S. T. da Silva
- Nanotechnology National Laboratory for Agriculture (LNNA)
- Embrapa Instrumentation
- São Carlos
- Brazil
| | - Caue Ribeiro
- Nanotechnology National Laboratory for Agriculture (LNNA)
- Embrapa Instrumentation
- São Carlos
- Brazil
| | - Vagner R. de Mendonça
- Federal University of São Carlos
- Science and Technology Center for Sustainability
- Sorocaba
- Brazil
- Federal Institute of Education, Science, and Technology of São Paulo – IFSP Campus Itapetininga
| |
Collapse
|