1
|
Selvaraj K, Yu B, Spontón ME, Kumar P, Veerasamy US, Arulraj A, Mangalaraja RV, Almarhoon ZM, Sayed SRM, Kannaiyan D. Nonylphenol polybenzoxazines-derived nitrogen-rich porous carbon (NRPC)-supported g-C 3N 4/Fe 3O 4 nanocomposite for efficient high-performance supercapacitor application. SOFT MATTER 2024; 20:7957-7969. [PMID: 39344978 DOI: 10.1039/d4sm00920g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In this work, a straightforward and scalable method was used to generate nitrogen-rich porous carbon (NRPC), which was then incorporated with a graphitic carbon nitride and magnetite (g-C3N4/Fe3O4) nanocomposite, fabricated with Fe3O4 nanoparticles as an eco-friendly and economically viable component. The fabricated NRPC/g-C3N4/Fe3O4 nanocomposite was applied as an electrode in supercapacitor applications. The synthesized NRPC/g-C3N4/Fe3O4 nanocomposite, NRPC, g-C3N4, and Fe3O4 were characterized by analytical and morphological analyses. The spherically shaped Fe3O4 nanoparticles were analyzed by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The specific surface area of NRPC/g-C3N4/Fe3O4 was determined to be 479 m2 g-1. All the crosslinked composites showed exceptional electrochemical performance and exhibited a pseudo-capacitance behaviour. In comparison to the Fe3O4 and g-C3N4/Fe3O4 electrodes, the NRPC/g-C3N4/Fe3O4 electrode showed a lower charge-transfer resistance and higher capacitance. The prepared NRPC/g-C3N4/Fe3O4 electrode exhibited the highest specific capacitance of 385 F g-1 at 1 A g-1 compared to Fe3O4 (112 F g-1) and g-C3N4/Fe3O4 (150 F g-1). Furthermore, the cycling efficiency of NRPC/g-C3N4/Fe3O4 remained at 94.3% even after 2000 cycles. The introduction of NRPC to g-C3N4/Fe3O4 improved its suitability for application in high-performance supercapacitors.
Collapse
Affiliation(s)
- Kumar Selvaraj
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Ruta Nacional 168, Km. 0, Santa Fe, 3000, Argentina.
- Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, Santa Fe, 3000, Argentina
| | - Bin Yu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Marisa E Spontón
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Ruta Nacional 168, Km. 0, Santa Fe, 3000, Argentina.
- Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, Santa Fe, 3000, Argentina
| | - Premnath Kumar
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Uma Shankar Veerasamy
- Department of Mechanical Engineering, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Arunachalam Arulraj
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Av. José Pedro Alessandri 1242, Ñuñoa, 7800002, Santiago, Chile
| | - Ramalinga Viswanathan Mangalaraja
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén 7941169, Santiago, Chile.
- Vicerrectoría de Investigación e Innovación, Universidad Arturo Prat, Avenida Arturo Prat 2120, Iquique 1110939, Chile
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shaban R M Sayed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
2
|
Limthin D, Leepheng P, Tunhoo B, Klamchuen A, Suramitr S, Thiwawong T, Phromyothin D. Enhancement in Sensitivity and Selectivity of Electrochemical Technique with CuO/g-C 3N 4 Nanocomposite Combined with Molecularly Imprinted Polymer for Melamine Detection. Polymers (Basel) 2024; 16:1800. [PMID: 39000656 PMCID: PMC11244477 DOI: 10.3390/polym16131800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
This study focused on enhancing the sensitivity and selectivity to detect melamine by utilizing a photoelectrochemical method. This was achieved by combining a melamine-imprinted polymer with a CuO/g-C3N4 nanocomposite, which was synthesized through chemical precipitation and calcination. The resulting nanocomposite exhibits improved carrier mobility and photoelectrochemical properties. A molecularly imprinted receptor for selective detection was created through bulk polymerization with methacrylic acid and a melamine template. The characterization of the nanocomposite was performed using X-ray photoelectron spectroscopy for the chemical oxidation state, X-ray diffraction patterns for the crystalline structure, and ultraviolet/visible/near-infrared spectroscopy for optical properties. The CuO/g-C3N4 nanocomposite exhibits photoactivity under visible light. The modified electrode, incorporating the CuO/g-C3N4 nanocomposite and melamine-imprinted polymer, demonstrates a linear detection range of 2.5 to 50 nM, a sensitivity of 4.172 nA/nM for melamine, and a low detection limit of 0.42 nM. It shows good reproducibility and high selectivity to melamine, proving effective against interferences and real samples, showcasing the benefits of the molecularly imprinted polymer.
Collapse
Affiliation(s)
- Dalawan Limthin
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Piyawan Leepheng
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Benchapol Tunhoo
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Electronic and Control System for Nanodevice Research Laboratory (ECSN), College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Annop Klamchuen
- National Nanotechnology Center, National Science and Technology Development Agency, Patumthani 12120, Thailand
| | - Songwut Suramitr
- Department of Chemical, Faculty of Science, Kasetsart University, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Thutiyaporn Thiwawong
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Electronic and Control System for Nanodevice Research Laboratory (ECSN), College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Darinee Phromyothin
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
3
|
Zinatloo-Ajabshir S, Rakhshani S, Mehrabadi Z, Farsadrooh M, Feizi-Dehnayebi M, Rakhshani S, Dušek M, Eigner V, Rtimi S, Aminabhavi TM. Novel rod-like [Cu(phen) 2(OAc)]·PF 6 complex for high-performance visible-light-driven photocatalytic degradation of hazardous organic dyes: DFT approach, Hirshfeld and fingerprint plot analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119545. [PMID: 37995482 DOI: 10.1016/j.jenvman.2023.119545] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
A novel octahedral distorted coordination complex was formed from a copper transition metal with a bidentate ligand (1,10-Phenanthroline) and characterized by Ultraviolet-visible spectroscopy, Ultraviolet-visible diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller, Field emission scanning electron microscopy, and Single-crystal X-ray diffraction. The Hirshfeld surface and fingerprint plot analyses were conducted to determine the interactions between atoms in the Cu(II) complex. DFT calculations showed that the central copper ion and its coordinated atoms have an octahedral geometry. The Molecular electrostatic potential (MEP) map indicated that the copper (II) complex is an electrophilic compound that can interact with negatively charged macromolecules. The HOMO-LUMO analysis demonstrated the π nature charge transfer from acetate to phenanthroline. The band gap of [Cu(phen)2(OAc)]·PF6 photocatalyst was estimated to be 2.88 eV, confirming that this complex is suitable for environmental remediation. The photocatalytic degradation of erythrosine, malachite green, methylene blue, and Eriochrome Black T as model organic pollutants using the prepared complex was investigated under visible light. The [Cu(phen)2(OAc)]·PF6 photocatalyst exhibited degradation 94.7, 90.1, 82.7, and 74.3 % of malachite green, methylene blue, erythrosine, and Eriochrome Black T, respectively, under visible illumination within 70 min. The results from the Langmuir-Hinshelwood kinetic analysis demonstrated that the Cu(II) complex has a higher efficiency for the degradation of cationic pollutants than the anionic ones. This was attributed to surface charge attraction between photocatalyst and cationic dyes promoting removal efficiency. The reusability test indicated that the photocatalyst could be utilized in seven consecutive photocatalytic degradation cycles with an insignificant decrease in efficiency.
Collapse
Affiliation(s)
| | - Sajjad Rakhshani
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, P.O. Box 98135-674, Iran
| | - Zohreh Mehrabadi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran
| | - Majid Farsadrooh
- Renewable Energies Research Laboratory, Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, P.O. Box 98135 674, Zahedan, Iran.
| | - Mehran Feizi-Dehnayebi
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, P.O. Box 98135-674, Iran.
| | - Saleh Rakhshani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michal Dušek
- Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21, Praha 8, Czech Republic
| | - Václav Eigner
- Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21, Praha 8, Czech Republic
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, 1201, Geneva, Switzerland.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
4
|
Rajendran S, Blanco A, Gnanasekaran L, Jalil AA, Chen WH, Gracia F. Harvesting visible light for enhanced catalytic degradation of wastewater using TiO 2@Fe 3O 4 embedded on two dimensional reduced graphene oxide nanosheets. CHEMOSPHERE 2023; 345:140418. [PMID: 37844702 DOI: 10.1016/j.chemosphere.2023.140418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Carbon-integrated binary metal oxide semiconductors have gained prominence in the last decade as a better material for photocatalytic wastewater treatment technology. In this regard, this research describes the investigation of the binary metal oxide TiO2@Fe3O4 embedded on reduced graphene oxide (rGO) nanosheets synthesized through a combination of sol-gel, chemical precipitation, and Hummer's processes. Besides, the catalyst is applied for the photocatalytic degradation of organic chlorophenol pollutants. The characterized diffraction results showed the peak broadening of the rGO-TiO2@Fe3O4 composite formed with tetragonal and cubic structures having small crystallite sizes. The TEM observation shows an enormous miniature of TiO2@Fe3O4 nanospheres spread on the folded 2D-rGO nanosheets with a large BET surface area. The XPS result holds the mixed phases of Fe3O4 and Fe2O3. Finally, the catalyst demonstrated a low band gap with extended light absorption towards visible light irradiation. The synergistic interactions between Fe3+ and Fe2+ improved the visible light activity due to the incorporation of rGO, and also possessed good recycling capacity. The increased mobility of electrons at the interfaces of TiO2 and Fe3O4 due to the mixing of rGO results in the separation of charge carriers by elevating the photocatalytic degradation efficiency of chlorophenol.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile.
| | - Adriana Blanco
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 6th Floor, Santiago, Chile
| | - Lalitha Gnanasekaran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | - F Gracia
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 6th Floor, Santiago, Chile.
| |
Collapse
|
5
|
Anand P, Verma A, Hong YA, Hu A, Jaihindh DP, Wong MS, Fu YP. Morphological and elemental tuning of BiOCl/BiVO 4 heterostructure for uric acid electrochemical sensor and antibiotic photocatalytic degradation. CHEMOSPHERE 2023; 310:136847. [PMID: 36241103 DOI: 10.1016/j.chemosphere.2022.136847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Deep eutectic solvents (DES) consisting of EG-(ChCl: C2H6O2) and TU-(ChCl: CH4N2S) assisted synthesized BiOCl/BiVO4 heterostructured catalyst studied for electrochemical uric acid (UA) sensor and tetracycline photocatalytic degradation. The chemical composition of the BiOCl/BiVO4 catalyst was analyzed by X-ray photoelectron spectroscopy (XPS). UV-vis spectroscopy reveals increased absorption of visible light till the near-infrared region, which results in a narrowing of band gap energy from 2.3 eV to 2.2 eV for BiOCl/BiVO4-TU. Morphology of catalyst analyzed using field-emission scanning electron microscope (FE-SEM) and Transmission electron microscope (TEM) technique. Time-Resolved photoluminescence (TRPL) confirms an increased lifetime of e-/h+ pair after heterostructure formation. The catalyst-modified glassy carbon electrode shows selectivity toward the detection of uric acid (UA). The limit of detection (LOD) is estimated to be 0.04688 μM for UA; also, interference and stability of catalyst were studied. Photocatalytic activity of the synthesized catalyst was investigated by degrading tetracycline (TC) antibiotic pollutants, and their intermediate product was analyzed by ion trap mass spectrometry (MS).
Collapse
Affiliation(s)
- Pandiyarajan Anand
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien, 97401, Taiwan
| | - Atul Verma
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien, 97401, Taiwan
| | - Yi-An Hong
- Institute of Medical Sciences, Tzu-Chi University, Hualien, 97002, Taiwan
| | - Anren Hu
- Institute of Medical Sciences, Tzu-Chi University, Hualien, 97002, Taiwan; Department of Laboratory Medicine and Biotechnology, Tzu-Chi University, Hualien, 97004, Taiwan
| | | | - Ming-Show Wong
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien, 97401, Taiwan.
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien, 97401, Taiwan.
| |
Collapse
|
6
|
Dong W, Wen H, Du X, Li L, Li Z. Electrochemical sensing of tetracycline based on Au NPs@MoS2/Ch hybrid structures. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Peng X, Yang Z, Hu F, Tan C, Pan Q, Dai H. Mechanistic investigation of rapid catalytic degradation of tetracycline using CoFe2O4@MoS2 by activation of peroxymonosulfate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Dong YD, Zhang LQ, Zhou P, Liu Y, Lin H, Zhong GJ, Yao G, Li ZM, Lai B. Natural cellulose supported carbon nanotubes and Fe 3O 4 NPs as the efficient peroxydisulfate activator for the removal of bisphenol A: An enhanced non-radical oxidation process. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127054. [PMID: 34481389 DOI: 10.1016/j.jhazmat.2021.127054] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Currently, many catalysts are inconvenient to separate from water, and the solvents used in the preparation process are not environmentally friendly, resulting in low recovery efficiency and secondary pollution. In this study, the magnetic and porous regenerated cellulose/carbon nanotubes/Fe3O4 nanoparticles (RC/CNTs/Fe3O4 NPs) composites were synthesized for activation of peroxydisulfate (PDS) in a green alkaline-urea system. The RC/CNTs/Fe3O4 NPs-PDS system achieved 100% removal of bisphenol A compared with CNTs (~64.6%), RC (~0%) or Fe3O4 NPs (~0%), which was closely related to the introduction of defects and functional groups, nitrogen doping and conductive networks. Interestingly, the strong interaction between CNTs and the sheath-like protective layer formed by urea on the cellulose surface promotes the introduction of nitrogen into the composites at the preparation temperature of 70 °C. Moreover, the mechanism of the system was found to be a typical non-radical pathway. Fortunately, there is no leaching of iron ions in the system, and the effects of the actual waterbody, initial pH, and different anions are negligible. The recycling and separation experiments revealed the practicality and superiority of the composite. This work provides a feasible and sustainable strategy for the application of natural cellulose-supported catalysts.
Collapse
Affiliation(s)
- Yu-Dan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Liang-Qing Zhang
- College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Hao Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China.
| |
Collapse
|
9
|
Manikandan VS, Harish S, Archana J, Navaneethan M. Fabrication of novel hybrid Z-Scheme WO 3@g-C 3N 4@MWCNT nanostructure for photocatalytic degradation of tetracycline and the evaluation of antimicrobial activity. CHEMOSPHERE 2022; 287:132050. [PMID: 34583295 DOI: 10.1016/j.chemosphere.2021.132050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Exploring highly efficient visible-light-driven photocatalyst for the elimination organic pollutants is a great concern for constructing sustainable green energy systems. In the current work, a novel hybrid ternary WO3@g-C3N4@MWCNT nanocomposites have been fabricated for visible-light-driven photocatalyst by self-assembly method. The as-prepared photocatalyst was examined by XRD, Raman, FESEM, HRTEM, XPS EDS, EIS, UV-visible DRS, and PL analysis. The experimental results revealed that the photocatalytic activity of WO3@g-C3N4@MWCNT nanocomposites on the degradation of Tetracycline (TC) is 79.54% at 120 min, which is higher than the binary WO3@g-C3N4 composite and pristine WO3. The improved degradation performance towards TC is recognized for its higher surface area, intense light absorption towards the visible region, and enhanced charge separation efficiency. Consequently, the fabricated catalyst endows a promising application for antibiotic degradation.
Collapse
Affiliation(s)
- V S Manikandan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India
| | - S Harish
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India
| | - J Archana
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India.
| | - M Navaneethan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India; Nanotechnology Research Centre, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India.
| |
Collapse
|
10
|
Kaur N, Tiwari P, Abbas Z, Mobin SM. Doxycycline detection and degradation in aqueous media via simultaneous synthesis of Fe-N@Carbon dots and Fe3O4-Carbon dot hybrid nanoparticles: One arrow two hawk approach. J Mater Chem B 2022; 10:5251-5262. [DOI: 10.1039/d2tb00475e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The overuse of antibiotics in recent years presents a huge challenge to society for their removal from the environment. The prolonged presence of antibiotics as environmental pollutants results in the...
Collapse
|
11
|
Das S, Chowdhury A. Recent advancements of g-C 3N 4-based magnetic photocatalysts towards the degradation of organic pollutants: a review. NANOTECHNOLOGY 2021; 33:072004. [PMID: 34731840 DOI: 10.1088/1361-6528/ac3614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous photocatalysis premised on advanced oxidation processes has witnessed a broad application perspective, including water purification and environmental remediation. In particular, the graphitic carbon nitride (g-C3N4), an earth-abundant metal-free conjugated polymer, has acquired extensive application scope and interdisciplinary consideration owing to its outstanding structural and physicochemical properties. However, several issues such as the high recombination rate of the photo-generated electron-hole pairs, smaller specific surface area, and lower electrical conductivity curtail the catalytic efficacy of bulk g-C3N4. Another challenging task is separating the catalyst from the reaction medium, limiting their reusability and practical applications. Therefore, several methodologies are adopted strategically to tackle these issues. Attention is being paid, especially to the magnetic nanocomposites (NCs) based catalysts to enhance efficiency and proficient reusability property. This review summarizes the latest progress related to the design and development of magnetic g-C3N4-based NCs and their utilization in photocatalytic systems. The usefulness of the semiconductor heterojunctions on the catalytic activity, working mechanism, and degradation of pollutants are discussed in detail. The major challenges and prospects of using magnetic g-C3N4-based NCs for photocatalytic applications are highlighted in this report.
Collapse
Affiliation(s)
- Suma Das
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
| | - Avijit Chowdhury
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
12
|
Liu Z, Kang SZ, Qin L, Li X. Smartly implanted reduced graphene oxide into graphic carbon nitride and copper species for enhanced photoelectric performance. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Barik B, Sahoo SJ, Maji B, Bag J, Mishra M, Dash P. Microwave-Assisted Development of Magnetically Recyclable PANI-Modified CoFe 2O 4-WO 3 p–n–n Heterojunction: A Visible-Light-Driven Photocatalyst for Antibiotic Toxicity Reduction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bapun Barik
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Shital Jyotsna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Banalata Maji
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Janmejaya Bag
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Priyabrat Dash
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
14
|
Song Q, Yang C, Yu CM. The green one-step electrodeposition of oxygen-functionalized porous g-C 3N 4 decorated with Fe 3O 4 nanoparticles onto Ni-foam as a binder-free outstanding material for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d0nj02980g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, the binder-free high-performance nanocomposite of Fe3O4/oxygen-functionalized g-C3N4 was fabricated through a one-pot electrophoretic-electrochemical (EP-EC) process.
Collapse
Affiliation(s)
- Qichao Song
- School of Control Technology
- Wuxi Institute of Technology
- Wuxi-214121
- China
| | - Chunguang Yang
- School of Control Technology
- Wuxi Institute of Technology
- Wuxi-214121
- China
| | - Chun-Ming Yu
- School of Physical Science and Technology
- Inner Mongolia University
- Hohhot
- China
| |
Collapse
|