1
|
Kim J, Kim D, Yoon H, Shin JH, Park S, Kwak HW, Ahn MR, Koo B, Choi IG. Glucaric Acid Production from Miscanthus sacchariflorus via TEMPO-Mediated Oxidation with an Efficient Separation System. ACS OMEGA 2024; 9:9432-9442. [PMID: 38434861 PMCID: PMC10905715 DOI: 10.1021/acsomega.3c08924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
In this study, production and isolation of glucaric acid from lignocellulosic biomass were performed via potassium cation-based TEMPO-mediated oxidation for the ease of glucaric acid isolation. To optimize the oxidation conditions, response surface methodology (RSM) was adopted using standard glucose as the raw material. Among the oxidation conditions, the dosage of oxidant and pH of reaction affected the glucaric acid production, and the optimum conditions were suggested by RSM analysis: 5 °C of reaction temperature, 4.23 equiv dosage of KClO per mole of glucose, and pH of 12. Furthermore, glucaric acid was produced from lignocellulosic biomass-derived enzymatic hydrolysate from Miscanthus under optimum conditions. The impurities such as xylose and lignin in enzymatic hydrolysate inhibited the efficiency of glucose oxidation. As a result, more oxidant was required to produce sufficient glucaric acid from the enzymatic hydrolysate compared to standard glucose. The produced glucaric acid was simply isolated by controlling the pH in the form of glucaric acid monopotassium salt, which showed lower solubility in water, and the purity of isolated glucaric acid was over 99%. The overall mass balance of feedstock to glucaric acid was analyzed, suggesting that 86.38% (w/w) glucaric acid could be produced from initial glucan in feedstock.
Collapse
Affiliation(s)
- Jonghwa Kim
- Research
Institute of Agriculture and Life Sciences, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daye Kim
- Department
of Agriculture, Forestry, and Bioresources, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeseon Yoon
- Department
of Agriculture, Forestry, and Bioresources, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Ho Shin
- Department
of Agriculture, Forestry, and Bioresources, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangwoo Park
- Department
of Agriculture, Forestry, and Bioresources, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Research
Institute of Agriculture and Life Sciences, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department
of Agriculture, Forestry, and Bioresources, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Myeong-Rok Ahn
- Department
of Agriculture, Forestry, and Bioresources, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Center
for Bio-based Chemistry, Korea Research Institute of Chemical Technology
(KRICT), Ulsan 44429, Republic
of Korea
| | - Bonwook Koo
- School
of Forestry Sciences and Landscape Architecture, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Gyu Choi
- Research
Institute of Agriculture and Life Sciences, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department
of Agriculture, Forestry, and Bioresources, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Selective glucose oxidation to organic acids over synthesized bimetallic oxides at low temperatures. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-022-02342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Conversion of dihydroxyacetone to carboxylic acids on pretreated clinoptilolite modified with iron, copper, and cobalt. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|