1
|
Mondal R, Chakraborty J, Dam P, Shaw S, Gangopadhyay D, Ertas YN, Mandal AK. Development of Aptamer-Functionalized Gold Nanoparticles as Probes in Point-of-Care Diagnostic Device for Rapid Detection of Multidrug-Resistant Bacteria in Bombyx mori L. . ACS APPLIED BIO MATERIALS 2024; 7:5740-5753. [PMID: 39110486 DOI: 10.1021/acsabm.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The sericulture industry suffers severe crop losses due to various silkworm diseases, necessitating the development of further technologies for rapid pathogen detection. Here, we report an all-in-one portable biosensor that combines conjugated gold nanoparticles (Au NPs) with an aptamer-based lateral flow assay (LFA) platform for the real-time analysis of Mammaliicoccus sp. and Pseudomonas sp. Our platform enables sample-to-answer naked eye detection within 5 min without any cross-reactivity with other representatives of the silkworm pathogenic bacterial group. This assay was based on the sandwich-type format using a bacteria-specific primary aptamer (Apt1) conjugated with 23 nm ± 1.27 nm Au NPs as a signal probe and another bacteria-specific secondary aptamer (Apt2)-coated nitrocellulose membrane as a capture probe. The hybridization between the signal probe and the capture probe in the presence of bacteria develops a red band in the test line, whose intensity is directly proportional to the bacterial concentration. Under the optimal experimental conditions, the visual limit of detection of the strip for Mammaliicoccus sp. and Pseudomonas sp. was 1.5 × 104 CFU/mL and 1.5 × 103 CFU/mL, respectively. Additionally, the performance of the LFA device was validated by using a colorimetric assay, and the results from the colorimetric assay are consistent with those obtained from the LFA. Our findings indicate that the developed point-of-care diagnostic device has significant potential for providing a cost-effective, scalable alternative for the rapid detection of silkworm pathogens.
Collapse
Affiliation(s)
- Rittick Mondal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Paulami Dam
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Shubhajit Shaw
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, Baku AZ1001, Azerbaijan
| | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
- Center for Nanotechnology Sciences (CeNS), Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| |
Collapse
|
2
|
Dutta SD, Patil TV, Ganguly K, Randhawa A, Acharya R, Moniruzzaman M, Lim KT. Trackable and highly fluorescent nanocellulose-based printable bio-resins for image-guided tissue regeneration. Carbohydr Polym 2023; 320:121232. [PMID: 37659796 DOI: 10.1016/j.carbpol.2023.121232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 09/04/2023]
Abstract
Dynamic tracking of cell migration during tissue regeneration remains challenging owing to imaging techniques that require sophisticated devices, are often lethal to healthy tissues. Herein, we developed a 3D printable non-invasive polymeric hydrogel based on 2,2,6,6-(tetramethylpiperidin-1-yl) oxyl (TEMPO)-oxidized nanocellulose (T-CNCs) and carbon dots (CDs) for the dynamic tracking of cells. The as-prepared T-CNC@CDs were used to fabricate a liquid bio-resin containing gelatin methacryloyl (GelMA) and polyethylene glycol diacrylate (GPCD) for digital light processing (DLP) bioprinting. The shear-thinning properties of the GPCD bio-resin were further improved by the addition of T-CNC@CDs, allowing high-resolution 3D printing and bioprinting of human cells with higher cytocompatibility (viability ∼95 %). The elastic modulus of the printed GPCD hydrogel was found to be ∼13 ± 4.2 kPa, which is ideal for soft tissue engineering. The as-fabricated hydrogel scaffold exhibited tunable structural color property owing to the addition of T-CNC@CDs. Owing to the unique fluorescent property of T-CNC@CDs, the human skin cells could be tracked within the GPCD hydrogel up to 30 days post-printing. Therefore, we anticipate that GPCD bio-resin can be used for 3D bioprinting with high structural stability, dynamic tractability, and tunable mechanical stiffness for image-guided tissue regeneration.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institue of Forest Science, Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institue of Forest Science, Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
3
|
Yadav C, Lee JM, Mohanty P, Li X, Jang WD. Graft onto approaches for nanocellulose-based advanced functional materials. NANOSCALE 2023; 15:15108-15145. [PMID: 37712254 DOI: 10.1039/d3nr03087c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The resurgence of cellulose as nano-dimensional 'nanocellulose' has unlocked a sustainable bioeconomy for the development of advanced functional biomaterials. Bestowed with multifunctional attributes, such as renewability and abundance of its source, biodegradability, biocompatibility, superior mechanical, optical, and rheological properties, tunable self-assembly and surface chemistry, nanocellulose presents exclusive opportunities for a wide range of novel applications. However, to alleviate its intrinsic hydrophilicity-related constraints surface functionalization is inevitably needed to foster various targeted applications. The abundant surface hydroxyl groups on nanocellulose offer opportunities for grafting small molecules or macromolecular entities using either a 'graft onto' or 'graft from' approach, resulting in materials with distinctive functionalities. Most of the reviews published to date extensively discussed 'graft from' modification approaches, however 'graft onto' approaches are not well discussed. Hence, this review aims to provide a comprehensive summary of 'graft onto' approaches. Furthermore, insight into some of the recently emerging applications of this grafted nanocellulose including advanced nanocomposite formulation, stimuli-responsive materials, bioimaging, sensing, biomedicine, packaging, and wastewater treatment has also been reviewed.
Collapse
Affiliation(s)
- Chandravati Yadav
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Jeong-Min Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| |
Collapse
|
4
|
Elsherbiny DA, Abdelgawad AM, Shaheen TI, Abdelwahed NAM, Jockenhoevel S, Ghazanfari S. Thermoresponsive nanofibers loaded with antimicrobial α-aminophosphonate-o/w emulsion supported by cellulose nanocrystals for smart wound care patches. Int J Biol Macromol 2023; 233:123655. [PMID: 36780965 DOI: 10.1016/j.ijbiomac.2023.123655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Long-term topical application of antibiotics on wounds has led to the emergence of drug-resistant bacterial infections. Antibiotic incorporation into the wound dressing requires enormous advancement of the field to ensure that the needed dose is released when the infection arises. This study synthesized a series of antimicrobial α-aminophosphonate derivatives, and the most effective compound was incorporated into thermoresponsive wound dressing patches. Wound dressing mats were fabricated by needleless electrospinning, and the resultant nanofiber mats were coated with a thermoresponsive eicosane/cellulose nanocrystals o/w system loaded with active α-aminophosphonate derivatives. Chemical, physical, thermal, and antimicrobial properties of the wound dressings were characterized wound dressings. Using SEM analysis, Nanofibers spun with 20 % w/v solutions were selected for drug-emulsion loading since they showed lower diameters with higher surface area. Furthermore, the drug-emulsion coating on the electrospun dressings improved the hydrophilicity of the wound dressings, and the thermoresponsive behavior of the mats was proved using differential scanning calorimetry data. Finally, the drug-loaded electrospun meshes were found active against tested microorganisms, and clear inhibition zones were observed. In conclusion, this novel approach of synthesizing a new family of antimicrobial molecules and their incorporation into nanofibers from renewable sources exhibits great potential for smart and innovative dressings.
Collapse
Affiliation(s)
- Dalia A Elsherbiny
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom, Menoufia, Egypt; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Abdelrahman M Abdelgawad
- Textile Research and Technology Institute, National Research Center (Affiliation ID: 60014618), 12622, Dokki, Giza, Egypt; Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura City 35511, Egypt.
| | - Tharwat I Shaheen
- Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura City 35511, Egypt
| | - Nayera A M Abdelwahed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Stefan Jockenhoevel
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany.
| |
Collapse
|
5
|
Zhang Y, Poon K, Masonsong GSP, Ramaswamy Y, Singh G. Sustainable Nanomaterials for Biomedical Applications. Pharmaceutics 2023; 15:922. [PMID: 36986783 PMCID: PMC10056188 DOI: 10.3390/pharmaceutics15030922] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Significant progress in nanotechnology has enormously contributed to the design and development of innovative products that have transformed societal challenges related to energy, information technology, the environment, and health. A large portion of the nanomaterials developed for such applications is currently highly dependent on energy-intensive manufacturing processes and non-renewable resources. In addition, there is a considerable lag between the rapid growth in the innovation/discovery of such unsustainable nanomaterials and their effects on the environment, human health, and climate in the long term. Therefore, there is an urgent need to design nanomaterials sustainably using renewable and natural resources with minimal impact on society. Integrating sustainability with nanotechnology can support the manufacturing of sustainable nanomaterials with optimized performance. This short review discusses challenges and a framework for designing high-performance sustainable nanomaterials. We briefly summarize the recent advances in producing sustainable nanomaterials from sustainable and natural resources and their use for various biomedical applications such as biosensing, bioimaging, drug delivery, and tissue engineering. Additionally, we provide future perspectives into the design guidelines for fabricating high-performance sustainable nanomaterials for medical applications.
Collapse
Affiliation(s)
- Yuhang Zhang
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Kingsley Poon
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | | | - Yogambha Ramaswamy
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Gurvinder Singh
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| |
Collapse
|
6
|
Patil T, Gambhir R, Vibhute A, Tiwari AP. Gold Nanoparticles: Synthesis Methods, Functionalization and Biological Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02287-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Borghei YS, Hosseinkhani S. Building Polyvalent DNA-Functionalized Anisotropic AuNPs Using Poly-Guanine-mediated In-Situ Synthesis For LSPR-Based Assays: Case Study on OncomiR-155. Photochem Photobiol 2021; 98:1043-1049. [PMID: 34958678 DOI: 10.1111/php.13586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
DNA functionalized gold nanoparticles (DNA-AuNPs) hold great promise for numerous biomedical applications, especially the building of well-defined nanosystems. Previously reported methods for the preparation of DNA-AuNPs all rely on the use of DNA bearing free thiol or disulfide groups at their 3'/5' ends. But here we report a novel polyvalent DNA-AuNPs conjugation approach by in-situ fast synthesis of AuNPs at the polyguanine (G12 ) strands. As confirmed by both TEM images and gel electrophoresis analysis, many poly G strand can form an individual anisotropic AuNP and so each AuNP functionalized with a dense layer of DNA, resulting in the formation of polyvalent (p)DNA-AuNPs. The general applicability of this novel approach was further verified in hybridization test and UV-Vis spectroscopy results show that pDNA-AuNPs conjugation is more attractive in biomedical diagnosis and specific sequence detection like microRNA-155 by using an extra-strand poly G with "sticky end" that are complementary to the target sequence.
Collapse
Affiliation(s)
- Yasaman-Sadat Borghei
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|