1
|
Xu Z, Geng Y, Guan L, Niu MM, Xu C, Yang L, Liang S. Discovery of a highly potent, selective, and stable d-amino acid-containing peptide inhibitor of CDK9/cyclin T1 interaction for the treatment of prostate cancer. Eur J Med Chem 2025; 285:117248. [PMID: 39808974 DOI: 10.1016/j.ejmech.2025.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a pivotal role in promoting oncogenic transcriptional pathways, significantly contributing to the development and progression of cancer. Given the unique biostability of d-amino acid, the development of d-amino acid-containing peptides (DAACPs) is a promising strategy for cancer treatment. Currently, no DAACPs inhibitor targeting CDK9-cyclin T1 have been reported. Here, we reported the identification of a novel, highly potent, selective and stable DAACPs inhibitor (peptide-5) targeting CDK9-cyclin T1 interaction. Peptide-5 showed nanomolar inhibitory effect against CDK9-cyclin T1 (IC50 = 4.16 ± 0.11 nM). Molecular dynamics (MD) simulation exhibited that peptide-5 stably bound to CDK9. Peptide-5 showed good inhibitory activity against multiple types of prostate cancer cells and demonstrated good biostability in mouse serum. Moreover, peptide-5 suppresses the tumor growth in DU145 cell-derived xenografts nude mice. These data suggest that peptide-5 is a potent antitumor candidate for further research.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Cen Xu
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Li Yang
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Sudong Liang
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
2
|
Camps-Fajol C, Cavero D, Minguillón J, Surrallés J. Targeting protein-protein interactions in drug discovery: Modulators approved or in clinical trials for cancer treatment. Pharmacol Res 2025; 211:107544. [PMID: 39667542 DOI: 10.1016/j.phrs.2024.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Protein-protein interactions (PPIs) form complex cellular networks fundamental to many key biological processes, including signal transduction, cell proliferation and DNA repair. In consequence, their perturbation is often associated with many human diseases. Targeting PPIs offers a promising approach in drug discovery and ongoing advancements in this field hold the potential to provide highly specific therapies for a wide range of complex diseases. Despite the development of PPI modulators is challenging, advances in the genetic, proteomic and computational level have facilitated their discovery and optimization. Focusing on anticancer drugs, in the last years several PPI modulators have entered clinical trials and venetoclax, which targets Bcl-2 family proteins, has been approved for treating different types of leukemia. This review discusses the clinical development status of drugs modulating several PPIs, such as MDM2-4/p53, Hsp90/Hsp90, Hsp90/CDC37, c-Myc/Max, KRAS/SOS1, CCR5/CCL5, CCR2/CCL2 or Smac/XIAP, in cancer drug discovery.
Collapse
Affiliation(s)
- Cristina Camps-Fajol
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain
| | - Debora Cavero
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain
| | - Jordi Minguillón
- CIBERER-ISCIII, IdiPAZ-CNIO Translational Research Unit in Pediatric Hemato-Oncology, La Paz University Hospital Research Institute; Spanish National Cancer Center, Madrid, Spain; Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Jordi Surrallés
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain; Servei de Genètica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
3
|
Dogan B, Durdağı S. Investigating the Effect of GLU283 Protonation State on the Conformational Heterogeneity of CCR5 by Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:8283-8298. [PMID: 39435878 DOI: 10.1021/acs.jcim.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
CCR5 is a class A GPCR and serves as one of the coreceptors facilitating HIV-1 entry into host cells. This receptor has vital roles in the immune system and is involved in the pathogenesis of different diseases. Various studies were conducted to understand its activation mechanism, including structural studies in which inactive and active states of the receptor were determined in complex with various binding partners. These determined structures provided opportunities to perform molecular dynamics (MD) simulations and to analyze conformational changes observed in the protein structures. The atomic-level dynamic studies allow us to explore the effects of ionizable residues on the receptor. Here, our aim was to investigate the conformational changes in CCR5 when it forms a complex with either the inhibitor maraviroc (MRV), an approved anti-HIV drug, or HIV-1 envelope protein GP120, and compare these changes to the receptor's apo form. In our simulations, we considered both ionized and protonated states of ionizable binding site residue GLU2837.39 in CCR5 as the protonation state of this residue was considered ambiguously in previous studies. Our molecular simulations results suggested that in fact, the change in the protonation state of GLU2837.39 caused interaction profiles to be different between CCR5 and its binding partners, GP120 or MRV. We observed that when the protonated state of GLU2837.39 was considered in complex with the envelope protein GP120, there were substantial structural changes in CCR5, indicating that it adopts a more active-like conformation. On the other hand, CCR5 in complex with MRV always adopted an inactive conformation regardless of the protonation state. Hence, the CCR5 coreceptor displays conformational heterogeneity not only depending on its binding partner but also influenced by the protonation state of the binding site binding site residue GLU2837.39. This outcome is also in accordance with some studies showing that GP120 binding could activate signaling pathways. This outcome could also have significant implications for discovering novel CCR5 inhibitors as anti-HIV drugs using in silico methods such as molecular docking, as it may be necessary to consider the protonated state of GLU2837.39.
Collapse
Affiliation(s)
- Berna Dogan
- Department of Biochemistry, School of Medicine, Bahcesehir University, Istanbul 34353, Türkiye
- Deparment of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Türkiye
| | - Serdar Durdağı
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Türkiye
- Molecular Therapy Lab, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahcesehir University, Istanbul 34353, Türkiye
- Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, Istanbul 34353, Türkiye
| |
Collapse
|
4
|
Rostom MM, El-Zohairy MA, Marzouk MA, Berger MR, Schols D, Assal RA, Mandour YM, Adwan H, Zlotos DP. N-[4-(Benzyloxy)-3-methoxybenzyl)]adamantane-1-amine (DZH2), a dual CCR5 and CXCR4 inhibitor as a potential agent against triple negative breast cancer. Arch Pharm (Weinheim) 2024:e2400146. [PMID: 39468982 DOI: 10.1002/ardp.202400146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
DZH2, a dual inhibitor of the chemokine receptors CCR5 and CXCR4, was discovered from virtual screening for CCR5 antagonists. In specific Ca2+ chemokine signaling assays, DZH2 displayed low micromolar IC50 values at both chemokine receptors. Its binding to intracellular allosteric binding sites of CCR5 and CXCR4 was confirmed by MD simulations and binding free-energy calculations. DZH2 is superior to the CCR5 antagonist maraviroc in terms of its inhibitory activity on the growth of two breast cancer cell lines. In MCF7 and MDA-MB-231 cells, DZH2 was a >100-fold more potent inhibitor of cell viability compared to maraviroc. DZH2 (6.7 µM) reduced migration of MDA-MB-231 cells to 4% compared to 50% inhibition of migration caused by maraviroc (780 µM). Also, DZH2 was a significantly more potent inhibitor of colony formation in MDA-MB-231 cells than maraviroc. In MCF10 cells, DZH2 caused no alteration in the gene expression with respect to cellular pathways mediating cell death, indicating its selectivity to breast cancer cells.
Collapse
Affiliation(s)
- Monica M Rostom
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mariam A El-Zohairy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Marzouk
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Reem A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Hassan Adwan
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
5
|
Amer AA, Soliman AAF, Alshareef WA, Mandour YM, Abdelrahman MT. Biochemical and biological studies of irradiated and non-irradiated extracts of Solanum aculeastrum Dunal fruit. Sci Rep 2024; 14:24829. [PMID: 39438506 PMCID: PMC11496676 DOI: 10.1038/s41598-024-73531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
This study explores the impact of γ-irradiation on ethanolic extracts of Solanum aculeastrum Dunal. The anti-cancer and antimicrobial properties were investigated. The obtained results revealed that total phenol (TP) and total flavonoid (TF) of total ethanol extract (100%) (FTE) were higher than 70% ethanol extract (SE), and these contents increased after gamma radiation with 5 kGy. The results of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the Solanum aculeastrum extracts suggested that FTE and 5 kGy-irradiated FTE can be used to control and prevent skin infections caused by MRSA and endocarditis, urinary tract infections, and prostatitis caused by Enterococcus faecalis. The FTE sample irradiated at 5 kGy showed cytotoxicity for A431 and Hct-116 cell lines similar to the control sample and higher than the toxicity revealed by the samples irradiated at 10 kGy. In normal cells (Bj-1), the toxicity was decreased after irradiation (IC50 = 31 μg/ml) compared to the non-irradiated extract (IC50 = 26.1 μg/ml). Molecular docking suggested Sortase A to play a role in chlorogenic acid antibacterial activity towards Staphylococcus aureus. In conclusion, γ-irradiation can be used to enhance the phytoconstituents of Solanum aculeastrum fruit extracts and, consequently, its biological properties.
Collapse
Affiliation(s)
- Asmaa A Amer
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Cairo, Egypt.
| | - Ahmed A F Soliman
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Walaa A Alshareef
- Microbiology and Immunology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
| | - Mohamad T Abdelrahman
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
6
|
Syahdi RR, Jasial S, Maeda I, Miyao T. Bridging Structure- and Ligand-Based Virtual Screening through Fragmented Interaction Fingerprint. ACS OMEGA 2024; 9:38957-38969. [PMID: 39310180 PMCID: PMC11411525 DOI: 10.1021/acsomega.4c05433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS), and their combinations, are frequently conducted in modern drug discovery campaigns. As a form of combination, an amalgamation of methods from ligand- and structure-based information, termed hybrid VS approaches, has been extensively investigated such as using interaction fingerprints (IFPs) in combination with machine learning (ML) models. This approach has the potential to prioritize active compounds in terms of protein-ligand binding and ligand structural characteristics, which is assumed to be difficult using either one of the approaches. Herein, we present an IFP, named the fragmented interaction fingerprint (FIFI), for hybrid VS approaches. FIFI is constructed from the extended connectivity fingerprint atom environments of a ligand proximal to the protein residues in the binding site. Each unique ligand substructure within each amino acid residue is encoded as a bit in FIFI while retaining sequence order. From the retrospective evaluation of activity prediction using a limited number and variety of active compounds for six biological targets, FIFI consistently showed higher prediction accuracy than that using previously proposed IFPs. For the same data sets, the screening performance of LBVS, SBVS sequential VS, parallel VS, and other hybrid VS approaches was investigated. Compared to these approaches, FIFI in combination with ML showed overall stable and high prediction accuracy, except for one target: the kappa opioid receptor, where the extended connectivity fingerprint combined with ML models showed better performance than other approaches by wide margins.
Collapse
Affiliation(s)
- Rezi Riadhi Syahdi
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Swarit Jasial
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Data
Science Center, Nara Institute of Science
and Technology, 8916-5
Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Itsuki Maeda
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Tomoyuki Miyao
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Data
Science Center, Nara Institute of Science
and Technology, 8916-5
Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
7
|
Toy L, Huber ME, Lee M, Bartolomé AA, Ortiz Zacarías NV, Nasser S, Scholl S, Zlotos DP, Mandour YM, Heitman LH, Szpakowska M, Chevigné A, Schiedel M. Fluorophore-Labeled Pyrrolones Targeting the Intracellular Allosteric Binding Site of the Chemokine Receptor CCR1. ACS Pharmacol Transl Sci 2024; 7:2080-2092. [PMID: 39022357 PMCID: PMC11249626 DOI: 10.1021/acsptsci.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
In this study, we describe the structure-based development of the first fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor type 1 (CCR1), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in inflammation and immune diseases. Starting from previously reported intracellular allosteric modulators of CCR1, tetramethylrhodamine (TAMRA)-labeled ligands were designed, synthesized, and tested for their suitability as fluorescent tracers to probe binding to the IABS of CCR1. In the course of these studies, we developed LT166 (12) as a highly versatile fluorescent CCR1 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonradioactive and high-throughput manner. Besides the detection of intracellular allosteric ligands by direct competition with 12, we were also able to monitor the binding of extracellular antagonists due to their positive cooperative binding with 12. Thereby, we provide a straightforward and nonradioactive method to easily distinguish between ligands binding to the IABS of CCR1 and extracellular negative modulators. Further, we applied 12 for the identification of novel chemotypes for intracellular CCR1 inhibition that feature high binding selectivity for CCR1 over CCR2. For one of the newly identified intracellular CCR1 ligands (i.e., 23), we were able to show CCR1 over CCR2 selectivity also on a functional level and demonstrated that this compound inhibits basal β-arrestin recruitment to CCR1, thereby acting as an inverse agonist. Thus, our fluorescent CCR1 ligand 12 represents a highly promising tool for future studies of CCR1-targeted pharmacology and drug discovery.
Collapse
Affiliation(s)
- Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Max E. Huber
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Minhee Lee
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Ana Alonso Bartolomé
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
- Faculty
of Science, Technology and Medicine, University
of Luxembourg, 2 Avenue
de l’Université, Esch-sur-Alzette L-4365, Luxembourg
| | - Natalia V. Ortiz Zacarías
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Sherif Nasser
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Stephan Scholl
- Institute
for Chemical and Thermal Process Engineering (ICTV), Technische Universität Braunschweig, Langer Kamp 7, Braunschweig 38106, Germany
| | - Darius P. Zlotos
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Yasmine M. Mandour
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Laura H. Heitman
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
- Oncode
Institute, Leiden University, Leiden 2333 CC, Netherlands
| | - Martyna Szpakowska
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| |
Collapse
|
8
|
Mandour YM, Refaat E, Hassanein HD. Anticancer activity, phytochemical investigation and molecular docking insights of Citrullus colocynthis (L.) fruits. Sci Rep 2023; 13:20038. [PMID: 37973959 PMCID: PMC10654702 DOI: 10.1038/s41598-023-46867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer disease is regarded as one of the most significant public health issues, regardless of economic standards. Medicinal plants are now regarded as a natural source of anticancer medicines due to their antioxidant and anti-mutagenic actions. Cucurbitaceae is considered to be one of the most economically significant families. One family species is Citrullus colocynthis (L.), which has a high concentration of many active secondary chemical metabolites. Various C. colocynthis plant extracts showed cytotoxicity against some cancer cells. This study aims to identify the C. colocynthis fruit components and determine whether they have anticancer action against MIA PaCa-2 and A431 cells. High-Performance Liquid Chromatography/Quadrupole Time of Flight/Mass Spectrometry (HPLC/QTOF/MS); the technique was accustomed to investigate the compounds of the ethyl acetate (EtOAc) fruit extract. Anticancer activity was investigated on both MIAPaCa-2 and A-431 cell lines. DPPH assay for antioxidant activity was carried out. Molecular modelling was employed to help understand the molecular basis for the observed anticancer activity. 24 compounds were tentatively identified by comparing the extract's fragmentation pattern in positive mode against reference compounds spectra and literature. The EtOAc extract of C. colocynthis had effective positive results on cancer cells (MIAPaCa-2 and A-431) and was characterized by slight or no harmful effect on normal (healthy) cells. For the DPPH assay, EtOAc and BuOH extracts exhibited high antioxidant activity (86 and 76%, respectively) compared with the oxidative potential of the standard compound (Caffeic acid, 98%). One of the major cucurbitacin derivatives that LC/MS tentatively identified in the EtOAc extract was Cucurbita-5(10),6,23-triene-3β,25-diol. During this study, docking experiments and MD simulations were carried out, which suggested the anti-pancreatic cancer activity of C. colocynthis extract to be attributed to EGFR inhibition by Cucurbita-5(10),6,23-triene-3β,25-diol. Therefore, expansion of this type of research should be encouraged in the hope of obtaining natural therapeutics for cancerous tumors in the future, having the advantage of being cheaper, safer, and with fewer side effects.
Collapse
Affiliation(s)
- Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt
| | - Esraa Refaat
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Heba D Hassanein
- Chemistry of Medicinal Plant Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
9
|
Kamal M, Badary HA, Omran D, Shousha HI, Abdelaziz AO, El Tayebi HM, Mandour YM. Virtual Screening and Biological Evaluation of Potential PD-1/PD-L1 Immune Checkpoint Inhibitors as Anti-Hepatocellular Carcinoma Agents. ACS OMEGA 2023; 8:33242-33254. [PMID: 37744828 PMCID: PMC10515376 DOI: 10.1021/acsomega.3c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 09/26/2023]
Abstract
Blockade of the programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) immune checkpoint pathway is an efficient immunotherapeutic modality that provided significant advances in cancer treatment especially in solid tumors highly resistant to traditional therapy. Monoclonal antibodies (mAbs) and small-molecule inhibitors are the two main strategies used to block this axis with mAbs suffering from many limitations. Accordingly, the current alternative is the development of small-molecule PD-1/PD-L1 inhibitors. Here, we present a sequential virtual screening (VS) protocol involving pharmacophore screening followed by molecular docking for the discovery of novel PD-L1 inhibitors. The VS protocol resulted in the discovery of eight novel compounds. A 100 ns MD simulation showed two compounds, H4 and H6, exhibiting a stable binding mode at the PD-L1 dimer interface. Upon evaluation of their immunological activities, the two compounds induced higher cytokines levels (IL-2, IL-6, and INF-γ) relative to BMS-202, 72 h post treatment of PBMCs of HCC patients. Thus, the discovered hits represent potential leads for the development of novel classes targeting the PD-L1 receptor as anti-hepatocellular carcinoma agents.
Collapse
Affiliation(s)
- Monica
A. Kamal
- Molecular
Pharmacology Research Group, Department of Pharmacology and Toxicology,
Faculty of Pharmacy and Biotechnology, German
University in Cairo, 11835 Cairo, Egypt
| | - Hedy A. Badary
- Endemic
Medicine and Hepato-gastroenterology Department, Faculty of Medicine, Cairo University, 11562 Cairo, Egypt
| | - Dalia Omran
- Endemic
Medicine and Hepato-gastroenterology Department, Faculty of Medicine, Cairo University, 11562 Cairo, Egypt
| | - Hend I. Shousha
- Endemic
Medicine and Hepato-gastroenterology Department, Faculty of Medicine, Cairo University, 11562 Cairo, Egypt
| | - Ashraf O. Abdelaziz
- Endemic
Medicine and Hepato-gastroenterology Department, Faculty of Medicine, Cairo University, 11562 Cairo, Egypt
| | - Hend M. El Tayebi
- Molecular
Pharmacology Research Group, Department of Pharmacology and Toxicology,
Faculty of Pharmacy and Biotechnology, German
University in Cairo, 11835 Cairo, Egypt
| | - Yasmine M. Mandour
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578 Cairo, Egypt
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| |
Collapse
|
10
|
Noonan T, Denzinger K, Talagayev V, Chen Y, Puls K, Wolf CA, Liu S, Nguyen TN, Wolber G. Mind the Gap-Deciphering GPCR Pharmacology Using 3D Pharmacophores and Artificial Intelligence. Pharmaceuticals (Basel) 2022; 15:1304. [PMID: 36355476 PMCID: PMC9695541 DOI: 10.3390/ph15111304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 01/08/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are amongst the most pharmaceutically relevant and well-studied protein targets, yet unanswered questions in the field leave significant gaps in our understanding of their nuanced structure and function. Three-dimensional pharmacophore models are powerful computational tools in in silico drug discovery, presenting myriad opportunities for the integration of GPCR structural biology and cheminformatics. This review highlights success stories in the application of 3D pharmacophore modeling to de novo drug design, the discovery of biased and allosteric ligands, scaffold hopping, QSAR analysis, hit-to-lead optimization, GPCR de-orphanization, mechanistic understanding of GPCR pharmacology and the elucidation of ligand-receptor interactions. Furthermore, advances in the incorporation of dynamics and machine learning are highlighted. The review will analyze challenges in the field of GPCR drug discovery, detailing how 3D pharmacophore modeling can be used to address them. Finally, we will present opportunities afforded by 3D pharmacophore modeling in the advancement of our understanding and targeting of GPCRs.
Collapse
Affiliation(s)
- Theresa Noonan
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pavan M, Bassani D, Bolcato G, Bissaro M, Sturles M, Moro S. Computational strategies to identify new drug candidates against neuroinflammation. Curr Med Chem 2022; 29:4756-4775. [PMID: 35135446 DOI: 10.2174/0929867329666220208095122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
The even more increasing application of computational approaches in these last decades has deeply modified the process of discovery and commercialization of new therapeutic entities. This is especially true in the field of neuroinflammation, in which both the peculiar anatomical localization and the presence of the blood-brain barrier makeit mandatory to finely tune the candidates' physicochemical properties from the early stages of the discovery pipeline. The aim of this review is therefore to provide a general overview to the readers about the topic of neuroinflammation, together with the most common computational strategies that can be exploited to discover and design small molecules controlling neuroinflammation, especially those based on the knowledge of the three-dimensional structure of the biological targets of therapeutic interest. The techniques used to describe the molecular recognition mechanisms, such as molecular docking and molecular dynamics, will therefore be eviscerated, highlighting their advantages and their limitations. Finally, we report several case studies in which computational methods have been applied in drug discovery on neuroinflammation, focusing on the last decade's research.
Collapse
Affiliation(s)
- Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Giovanni Bolcato
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Maicol Bissaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Mattia Sturles
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
12
|
Mielcarska S, Kula A, Dawidowicz M, Kiczmer P, Chrabańska M, Rynkiewicz M, Wziątek-Kuczmik D, Świętochowska E, Waniczek D. Assessment of the RANTES Level Correlation and Selected Inflammatory and Pro-Angiogenic Molecules Evaluation of Their Influence on CRC Clinical Features: A Preliminary Observational Study. Medicina (B Aires) 2022; 58:medicina58020203. [PMID: 35208526 PMCID: PMC8880690 DOI: 10.3390/medicina58020203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Background and Objectives: Assessment of RANTES level and concentrations of inflammatory cytokines: programmed death ligand 1 (PD-L1), interferon gamma IFN-γ, tumor necrosis factor alpha (TNF-α), transforming growht factor β (TGF-β) (and angiogenesis factors: vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor C (VEGF C) in tumor and margin tissues of colorectal cancer (CRC,) and evaluation of RANTES influence on histopathological parameters (microvessel density (MVD), budding, tumor-infiltrating lymphocytes (TILs)), in relation to patients’ clinical features. Materials and Methods: The study used 49 samples of tumor and margin tissues derived from CRC patients. To determinate the concentration of RANTES, PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C, we used the commercially available enzyme-linked immunosorbent assay kit. Additionally, RANTES and PD-L1 expression was assessed with the use of IHC staining in both tumor cells and TILS in randomly selected cases. MVD was assessed on CD34-stained specimens. The MVD and budding were assessed using a light microscope. Results: We found significantly higher levels of RANTES, PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C in the tumor in comparison with the margin. The RANTES tumor levels correlated significantly with those of PD-L1, TNF-α, TGF-β, VEGF-A, and VEGF-C. The RANTES margin levels were significantly associated with the margin levels of all proteins investigated—PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C. Additionally, we observed RANTES- and PD-L1-positive immunostaining in TILs. In a group of 24 specimens, 6 different CRC tumors were positive for RANTES and PD-L1 immunostaining. The IFN-gamma concentration in both tumor and margin and TGF-β in tumor correlated with TILs. TILs were negatively associated with the patients’ disease stage and N parameter. Conclusions: RANTES activity might be associated with angiogenesis, lymphogenesis, and immune escape in CRC. RANTES is an important chemokine that is a part of the chemokine–cytokine network involved in the modulation of TME composition in CRC. Further research may verify which processes are responsible for the associations observed in the study.
Collapse
Affiliation(s)
- Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland;
- Correspondence:
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Paweł Kiczmer
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Magdalena Chrabańska
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Magdalena Rynkiewicz
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Daria Wziątek-Kuczmik
- Department of Cranio-Maxillo-Facial Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 20-24 Francuska, 40-027 Katowice, Poland;
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland;
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| |
Collapse
|