1
|
Huang G, Cierpicki T, Grembecka J. Thioamides in medicinal chemistry and as small molecule therapeutic agents. Eur J Med Chem 2024; 277:116732. [PMID: 39106658 PMCID: PMC12009601 DOI: 10.1016/j.ejmech.2024.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Thioamides, which are fascinating isosteres of amides, have garnered significant attention in drug discovery and medicinal chemistry programs, spanning peptides and small molecule compounds. This review provides an overview of the various applications of thioamides in small molecule therapeutic agents targeting a range of human diseases, including cancer, microbial infections (e.g., tuberculosis, bacteria, and fungi), viral infections, neurodegenerative conditions, analgesia, and others. Particular focus is given to design strategies of biologically active thioamide-containing compounds and their biological targets, such as kinases and histone methyltransferase ASH1L. Additionally, the review discusses the impact of the thioamide moiety on key properties, including potency, target interactions, physicochemical characteristics, and pharmacokinetics profiles. We hope that this work will offer valuable insights to inspire the future development of novel bioactive thioamide-containing compounds, facilitating their effective use in combating a wide array of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Bonne S, Saleem M, Hanif M, Najjar J, Khan S, Zeeshan M, Tahir T, Ali A, Lu C, Chen T. Synthesis, Urease Inhibition, Molecular Docking, and Optical Analysis of a Symmetrical Schiff Base and Its Selected Metal Complexes. Molecules 2024; 29:4899. [PMID: 39459267 PMCID: PMC11510561 DOI: 10.3390/molecules29204899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Designing and developing small organic molecules for use as urease inhibitors is challenging due to the need for ecosystem sustainability and the requirement to prevent health risks related to the human stomach and urinary tract. Moreover, imaging analysis is widely utilized for tracking infections in intracellular and in vivo systems, which requires drug molecules with emissive potential, specifically in the low-energy region. This study comprises the synthesis of a Schiff base ligand and its selected transition metals to evaluate their UV/fluorescence properties, inhibitory activity against urease, and molecular docking. Screening of the symmetrical cage-like ligand and its metal complexes with various eco-friendly transition metals revealed significant urease inhibition potential. The IC50 value of the ligand for urease inhibition was 21.80 ± 1.88 µM, comparable to that of thiourea. Notably, upon coordination with transition metals, the ligand-nickel and ligand-copper complexes exhibited even greater potency than the reference compound, with IC50 values of 11.8 ± 1.14 and 9.31 ± 1.31 µM, respectively. The ligand-cobalt complex exhibited an enzyme inhibitory potential comparable with thiourea, while the zinc and iron complexes demonstrated the least activity, which might be due to weaker interactions with the investigated protein. Meanwhile, all the metal complexes demonstrated a pronounced optical response, which could be utilized for fluorescence-guided targeted drug delivery applications in the future. Molecular docking analysis and IC50 values from in vitro urease inhibition screening showed a trend of increasing activity from compounds 7d to 7c to 7b. Enzyme kinetics studies using the Lineweaver-Burk plot indicated mixed-type inhibition against 7c and non-competitive inhibition against 7d.
Collapse
Affiliation(s)
- Samuel Bonne
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Faculty of Medicine, McGill University, Montréal, QC H3A 0G4, Canada
| | - Muhammad Saleem
- Department of Chemistry, Thal University Bhakkar, Bhakkar 30000, Pakistan
- Department of Chemistry, University of Sargodha, Sargodha 40162, Pakistan
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub Campus, Layyah 31200, Pakistan
| | - Joseph Najjar
- Faculty of Medicine, McGill University, Montréal, QC H3A 0G4, Canada
| | - Salahuddin Khan
- College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Muhammad Zeeshan
- Department of Chemistry, GC University Faisalabad, Sub Campus, Layyah 31200, Pakistan
| | - Tehreem Tahir
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Anser Ali
- Department of Biological Sciences, Mirpur University of Science and Technology (MUST), Mirpur 10250, AJK, Pakistan
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Tatsinda Tsapi VB, Fotsing Fongang YS, Awantu AF, Kezetas Bankeu JJ, Lateef M, Chouna JR, Nkeng-Efouet-Alango P, Ali MS, Lenta BN. Crotofoligandrin, a new endoperoxide crotofolane-type diterpenoid from the twigs of Croton oligandrus Pierre ex. Hutch (Euphorbiaceae). Z NATURFORSCH C 2023; 78:275-283. [PMID: 36803991 DOI: 10.1515/znc-2022-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023]
Abstract
Crotofoligandrin (1), a new endoperoxide crotofolane-type diterpenoid was isolated from the dichloromethane/methanol (1:1) extract of the twigs of Croton oligandrus Pierre Ex Hutch along with thirteen known secondary metabolites including 1-nonacosanol (2), lupenone (3), friedelin (4), β-sitosterol (5), taraxerol (6), (-)-hardwickiic acid (7), apigenin (8), acetyl aleuritolic acid (9), betulinic acid (10), fokihodgin C 3-acetate (11), D-mannitol (12), scopoletin (13) and quercetin (14). The structures of the isolated compounds were determined based on their spectroscopic data. The crude extract and the isolated compounds were assessed in vitro for their antioxidant, lipoxygenase, butyrylcholinesterase (BChE), urease and glucosidase inhibitory potentials. Compounds 1-3, and 10 displayed activities on all the performed bioassays. All the tested samples showed strong to significant antioxidant activity with compound 1 being the most potent (IC50 39.4 μM).
Collapse
Affiliation(s)
| | | | - Angelbert Fusi Awantu
- Department of Chemistry, Faculty of Science, The University of Bamenda, Bambili, Bamenda, Cameroon
| | | | - Mehreen Lateef
- Multi-Disciplinary Research Lab, Bahria University, Medical and Dental College, Karachi, Pakistan
| | - Jean Rodolphe Chouna
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | | | - Muhammad Shaiq Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, 75270, Karachi, Pakistan
| | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47 Yaoundé, Cameroon
| |
Collapse
|
4
|
Channar PA, Alharthy RD, Ejaz SA, Saeed A, Iqbal J. Synthesis, Biological Evaluation, and Molecular Dynamics of Carbothioamides Derivatives as Carbonic Anhydrase II and 15-Lipoxygenase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248723. [PMID: 36557863 PMCID: PMC9785969 DOI: 10.3390/molecules27248723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
A series of hydrazine-1-carbothioamides derivatives (3a-3j) were synthesized and analyzed for inhibitory potential towards bovine carbonic anhydrase II (b-CA II) and 15-lipoxygenase (15-LOX). Interestingly, four derivatives, 3b, 3d, 3g, and 3j, were found to be selective inhibitors of CA II, while other derivatives exhibited CA II and 15-LOX inhibition. In silico studies of the most potent inhibitors of both b-CA II and 15-LOX were carried out to find the possible binding mode of compounds in their active site. Furthermore, MD simulation results confirmed that these ligands are stably bound to the two targets, while the binding energy further confirmed the inhibitory effects of the 3h compound. As these compounds may have a role in particular diseases, the reported compounds are of great relevance for future applications in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Pervaiz Ali Channar
- Department of Basic sciences and Humanities, Faculty of Information Sciences and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Rima D. Alharthy
- Chemistry Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
- Correspondence: (A.S.); or (J.I.)
| | - Jamshed Iqbal
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Correspondence: (A.S.); or (J.I.)
| |
Collapse
|
5
|
Li SY, Zhang Y, Wang YN, Yuan LC, Kong CC, Xiao ZP, Zhu HL. Identification of (N-aryl-N-arylsulfonyl)aminoacetohydroxamic acids as novel urease inhibitors and the mechanism exploration. Bioorg Chem 2022; 130:106275. [DOI: 10.1016/j.bioorg.2022.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
6
|
Design and synthesis of new N-thioacylated ciprofloxacin derivatives as urease inhibitors with potential antibacterial activity. Sci Rep 2022; 12:13827. [PMID: 35970866 PMCID: PMC9378659 DOI: 10.1038/s41598-022-17993-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/03/2022] [Indexed: 01/06/2023] Open
Abstract
A new series of N-thioacylated ciprofloxacin 3a-n were designed and synthesized based on Willgerodt-Kindler reaction. The results of in vitro urease inhibitory assay indicated that almost all the synthesized compounds 3a-n (IC50 = 2.05 ± 0.03-32.49 ± 0.32 μM) were more potent than standard inhibitors, hydroxyurea (IC50 = 100 ± 2.5 μM) and thiourea (IC50 = 23 ± 0.84 μM). The study of antibacterial activity against Gram-positive species (S. aureus and S. epidermidis) revealed that the majority of compounds were more active than ciprofloxacin as the standard drug, and 3h derivative bearing 3-fluoro group had the same effect as ciprofloxacin against Gram-negative bacteria (P. aeruginosa and E. coli). Based on molecular dynamic simulations, compound 3n exhibited pronounced interactions with the critical residues of the urease active site and mobile flap pocket so that the quinolone ring coordinated toward the metal bi-nickel center and the essential residues at the flap site like His593, His594, and Arg609. These interactions caused blocking the active site and stabilized the movement of the mobile flap at the entrance of the active site channel, which significantly reduced the catalytic activity of urease. Noteworthy, 3n also exhibited IC50 values of 5.59 ± 2.38 and 5.72 ± 1.312 µg/ml to inhibit urease enzyme against C. neoformans and P. vulgaris in the ureolytic assay.
Collapse
|
7
|
Ban Y, Wang Y, Li H, Wang Y, Li D, Yang J. Thioamide directed iridium(I)-catalyzed C-H arylation of ferrocenes with aryl boronic acids. Org Biomol Chem 2022; 20:5759-5763. [PMID: 35801428 DOI: 10.1039/d2ob00863g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first Ir(I)-catalyzed thioamide-assisted C-H arylation of ferrocenes with aryl boronic acids under base-free mild reaction conditions in the presence of Ag2CO3 as an oxidant with eco-friendly 2-MeTHF as a solvent was developed. This reaction has a wide range of substrates (37 examples) and functional group tolerance (18-94% yields), and provides promising access to aryl thioamide-ferrocene compounds with good yields and regioselectivity.
Collapse
Affiliation(s)
- Yan Ban
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China
| | - Yingxin Wang
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China
| | - Hao Li
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China
| | - Dianjun Li
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China.,State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, PR China.
| | - Jinhui Yang
- School of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, People's Republic of China.,State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, PR China.
| |
Collapse
|
8
|
Hu D, Wu D, Lu Y, Liu J, Guo Z, Wang S, Zhai C, Qing Z, Hu Y. Protonation-induced DNA conformational-change dominated electrochemical platform for glucose oxidase and urease analysis. Anal Chim Acta 2022; 1226:340164. [DOI: 10.1016/j.aca.2022.340164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/16/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022]
|
9
|
Çapan İ. Methimazole Analogs as Urease Inhibitors: Synthesis,
In Silico
and
In Vitro
Evaluation. ChemistrySelect 2022. [DOI: 10.1002/slct.202104076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- İrfan Çapan
- Technical Sciences Vocational College Department of Material and Material Processing Technologies Gazi University 06560 Ankara Turkey
- Faculty of Pharmacy Department of Pharmaceutical Chemistry Gazi University 06560 Ankara Turkey
| |
Collapse
|