1
|
Zhou KXT, Bujold KE. The Emergence of Oligonucleotide Building Blocks in the Multispecific Proximity-Inducing Drug Toolbox of Destruction. ACS Chem Biol 2025; 20:3-18. [PMID: 39704048 DOI: 10.1021/acschembio.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Oligonucleotides are a rapidly emerging class of therapeutics. Their most well-known examples are informational drugs that modify gene expression by binding mRNA. Despite inducing proximity between biological machinery and mRNA when applied to modulating gene expression, oligonucleotides are not typically labeled as "proximity-inducing" in literature. Yet, they have recently been explored as building blocks for multispecific proximity-inducing drugs (MPIDs). MPIDs are unique because they can direct endogenous biological machinery to destroy targeted molecules and cells, in contrast to traditional drugs that inhibit only their functions. The unique mechanism of action of MPIDs has enabled the targeting of previously "undruggable" molecular entities that cannot be effectively inhibited. However, the development of MPIDs must ensure that these molecules will selectively direct a potent, destruction-based mechanism of action toward intended targets over healthy tissues to avoid causing life-threatening toxicities. Oligonucleotides have emerged as promising building blocks for the design of MPIDs because they are sequence-controlled molecules that can be rationally designed to program multispecific binding interactions. In this Review, we examine the emergence of oligonucleotide-containing MPIDs in the proximity induction space, which has been dominated by antibody and small molecule MPID modalities. Moreover, examples of oligonucleotides developed as MPID candidates in immunotherapy and protein degradation are discussed to demonstrate the utility of oligonucleotides in expanding the scope and selectivity of the MPID toolbox. Finally, we discuss the utility of programming "AND" gates into oligonucleotide scaffolds to encode conditional responses that have the potential to be incorporated into MPIDs, which can further enhance their selectivity, thus increasing the scope of this drug category.
Collapse
Affiliation(s)
- Kevin Xiao Tong Zhou
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ONL8S 4M1, Canada
| | - Katherine E Bujold
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ONL8S 4M1, Canada
| |
Collapse
|
2
|
Hamidi SV, Jahromi AK, Hosseini II, Moakhar RS, Collazos C, Pan Q, Liang C, Mahshid S. Surface-Based Multimeric Aptamer Generation and Bio-Functionalization for Electrochemical Biosensing Applications. Angew Chem Int Ed Engl 2024; 63:e202402808. [PMID: 38764376 DOI: 10.1002/anie.202402808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Multimeric aptamers have gained more attention than their monomeric counterparts due to providing more binding sites for target analytes, leading to increased affinity. This work attempted to engineer the surface-based generation of multimeric aptamers by employing the room temperature rolling circle amplification (RCA) technique and chemically modified primers for developing a highly sensitive and selective electrochemical aptasensor. The multimeric aptamers, generated through surface RCA, are hybridized to modified spacer primers, facilitating the positioning of the aptamers in the proximity of sensing surfaces. These multimeric aptamers can be used as bio-receptors for capturing specific targets. The surface amplification process was fully characterized, and the optimal amplification time for biosensing purposes was determined, using SARS-CoV-2 spike protein (SP). Interestingly, multimeric aptasensors produced considerably higher response signals and affinity (more than 10-fold), as well as higher sensitivity (almost 4-fold) compared to monomeric aptasensors. Furthermore, the impact of surface structures on the response signals was studied by utilizing both flat working electrodes (WEs) and nano-/microislands (NMIs) WEs. The NMIs multimeric aptasensors showed significantly higher sensitivity in buffer and saliva media with the limit of detection less than 2 fg/ml. Finally, the developed NMIs multimeric aptasensors were clinically challenged with several saliva patient samples.
Collapse
Affiliation(s)
- Seyed Vahid Hamidi
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | | | - Imman I Hosseini
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | | | - Cesar Collazos
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, 3T 1E2, Canada
| | - Qinghua Pan
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, 3T 1E2, Canada
| | - Chen Liang
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, 3T 1E2, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, H3A 0G4, Canada
| |
Collapse
|
3
|
Li X, Li G, Pan Q, Xue F, Wang Z, Peng C. Rapid and ultra-sensitive lateral flow assay for pathogens based on multivalent aptamer and magnetic nanozyme. Biosens Bioelectron 2024; 250:116044. [PMID: 38271888 DOI: 10.1016/j.bios.2024.116044] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
Ultra-sensitive LFA methods for pathogen detection commonly depended on tedious and time-consuming nucleic acid amplification. Here, a high affinity multivalent aptamer (multi-Apt) for S. aureus was obtained through exquisite engineering design. The scaffold and conformation of the multi-Apt were found to be key factors in the detection signal of aptsensors. After optimization, the binding affinity of the multi-Apt to S. aureus was improved by more than 8-fold from 135.9 nM to 16.77 nM. By the joint use of the multi-Apt and a multifunctional nanozyme Fe3O4@MOF@PtPd, a fast and ultra-sensitive LFA for S. aureus was developed (termed MA-MN LFA). In this method, a Fe3O4@MOF@PtPd nanozyme was modified with vancomycin and could efficiently capture and separate S. aureus. Moreover, the multi-Apt worked together with the nanozyme to bind with S. aureus to form a ternary complex at the same time, which simply the fabrication of LFA strip. The developed MA-MN LFA could detect S. aureus as low as 2 CFU/mL within 30 min and a wide linear range of 10-1 × 108 CFU/mL was obtained. The detection is easily operated, fast (can be completed within 30 min) and versatile for Gram-positive pathogens, thus has great potential as a powerful tool in pathogen detection.
Collapse
Affiliation(s)
- Xiuping Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Guowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Qiuli Pan
- Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Feng Xue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Chifang Peng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| |
Collapse
|
4
|
Qiao Z, Xue L, Sun M, Ma N, Shi H, Yang W, Cheong LZ, Huang X, Xiong Y. Dual-Functional Tetrahedron Multivalent Aptamer Assisted Amplification-Free CRISPR/Cas12a Assay for Sensitive Detection of Salmonella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:857-864. [PMID: 38134022 DOI: 10.1021/acs.jafc.3c07582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Salmonellosis continues to impose a significant economic burden globally. Rapid and sensitive detection of Salmonella is crucial to preventing the outbreaks of foodborne illnesses, yet it remains a formidable challenge. Herein, a dual-functional tetrahedron multivalent aptamer assisted amplification-free CRISPR/Cas12a assay was developed for Salmonella detection. In the system, the aptamer was programmatically assembled on the tetrahedral DNA nanostructure to fabricate a multivalent aptamer (TDN-multiApt), which displayed a 3.5-fold enhanced avidity over the monovalent aptamer and possessed four CRISPR/Cas12a targeting fragments to amplify signal. Therefore, TDN-multiApt could directly activate Cas12a to achieve the second signal amplification without any nucleic acid amplification. By virtue of the synergism of high avidity and cascaded signal amplifications, the proposed method allowed the ultrasensitive detection of Salmonella as low as 7 cfu mL-1. Meanwhile, this novel platform also exhibited excellent specificity against target bacteria and performed well in the detection of various samples, indicating its potential application in real samples.
Collapse
Affiliation(s)
- Zhaohui Qiao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Liangliang Xue
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Mengni Sun
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Na Ma
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hanxing Shi
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Wenge Yang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Ling-Zhi Cheong
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville 3003, Australia
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330031, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Chen J, Xu J, Xiang J, Wan T, Deng H, Li D. A multivalent activatable aptamer probe with ultralow background signal and high sensitivity for diagnosis of lung adenocarcinoma. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Williams NB, Batool S, Zumrut HE, Patel R, Sosa G, Jamal M, Mallikaratchy P. An In Vitro Selection Platform to Identify Multiple Aptamers against Multiple Cell-Surface Markers Using Ligand-Guided Selection. Biochemistry 2022; 61:1600-1613. [PMID: 35829681 PMCID: PMC10117398 DOI: 10.1021/acs.biochem.2c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aptamer ligand discovery against multiple molecules expressed on whole cells is an essential component in molecular tool development. However, owing to their intrinsic structural characteristics, cell-surface receptors have proven to be challenging targets in ligand discovery. Several variants to systematic evolution of ligands by exponential enrichment (SELEX) have been introduced to address the ″target problem″ for aptamer screening. To this end, we introduced a variant of SELEX, termed ligand-guided selection (LIGS), to identify highly specific aptamers against complex cell-surface markers in their native state. So far, the application of LIGS has been aimed at identifying aptamers against the most dominant receptors on the cell surface. Here, we report that LIGS can be expanded to identify two receptors on the same cell surface, paving the way to generate a multiplexed ligand discovery platform based on SELEX-targeting membrane receptors in their native functional state. Using CD19 and CD20 expressed on Toledo cells as a model system, multiple aptamer families were evolved against Toledo cells. We then utilized two monoclonal antibodies (mAbs) against CD20 and CD19 to selectively partition specific aptamers against CD19 and CD20. Following biochemical characterization, we introduce two specific aptamers against CD19 and two specific aptamers against CD20 with high affinity. Multi-target LIGS, as reported here, demonstrates a successful combinatorial approach for nucleic acid library screening to generate multiple artificial nucleic acid ligands against multiple receptors expressed on a single cell.
Collapse
Affiliation(s)
- Nicole B Williams
- Ph.D. Program in Molecular, Cellular and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Sana Batool
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd., West Bronx, New York, New York 10468, United States
| | - Hasan E Zumrut
- Ph.D. Programs in Chemistry and Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Rutika Patel
- Ph.D. Programs in Chemistry and Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - German Sosa
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd., West Bronx, New York, New York 10468, United States
| | - Mohammad Jamal
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd., West Bronx, New York, New York 10468, United States
| | - Prabodhika Mallikaratchy
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd., West Bronx, New York, New York 10468, United States
- Ph.D. Programs in Chemistry and Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D. Program in Molecular, Cellular and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
7
|
Douaki A, Garoli D, Inam AKMS, Angeli MAC, Cantarella G, Rocchia W, Wang J, Petti L, Lugli P. Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors. BIOSENSORS 2022; 12:bios12080574. [PMID: 36004970 PMCID: PMC9405846 DOI: 10.3390/bios12080574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements. With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To date, the systematic evolution of ligands by exponential enrichment (SELEX) process is employed to isolate aptamers. Nevertheless, this method requires complex and time-consuming procedures. In silico methods comprising machine learning models have been recently proposed to reduce the time and cost of aptamer design. In this work, we present a new in silico approach allowing the generation of highly sensitive and selective RNA aptamers towards a specific target, here represented by ammonium dissolved in water. By using machine learning and bioinformatics tools, a rational design of aptamers is demonstrated. This “smart” SELEX method is experimentally proved by choosing the best five aptamer candidates obtained from the design process and applying them as functional elements in an electrochemical sensor to detect, as the target molecule, ammonium at different concentrations. We observed that the use of five different aptamers leads to a significant difference in the sensor’s response. This can be explained by considering the aptamers’ conformational change due to their interaction with the target molecule. We studied these conformational changes using a molecular dynamics simulation and suggested a possible explanation of the experimental observations. Finally, electrochemical measurements exposing the same sensors to different molecules were used to confirm the high selectivity of the designed aptamers. The proposed in silico SELEX approach can potentially reduce the cost and the time needed to identify the aptamers and potentially be applied to any target molecule.
Collapse
Affiliation(s)
- Ali Douaki
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
- Correspondence: (A.D.); (P.L.)
| | - Denis Garoli
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy;
| | - A. K. M. Sarwar Inam
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Martina Aurora Costa Angeli
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Giuseppe Cantarella
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Walter Rocchia
- CONCEPT Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy;
| | - Jiahai Wang
- School of Mechanical and Electrical Engineering, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Luisa Petti
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Paolo Lugli
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
- Correspondence: (A.D.); (P.L.)
| |
Collapse
|
8
|
Boykoff N, Freage L, Lenn J, Mallikaratchy P. Bispecific Aptamer Sensor toward T-Cell Leukemia Detection in the Tumor Microenvironment. ACS OMEGA 2021; 6:32563-32570. [PMID: 34901605 PMCID: PMC8655784 DOI: 10.1021/acsomega.1c04125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/06/2021] [Indexed: 06/14/2023]
Abstract
The current detection methods of malignant cells are mainly based on the high expression levels of certain surface proteins on these cells. However, many of the same surface marker proteins are also expressed in normal cells. Growing evidence suggests that the molecular signatures of the tumor microenvironment (TME) are related to the biological state of a diseased cell. Exploiting the unique molecular signature of the TME, we have designed a molecular sensing agent consisting of a molecular switch that can sense the elevated concentration of a small molecule in the TME and promote precise recognition of a malignant cell. We accomplished this by designing and developing a bispecific aptamer that takes advantage of a high concentration of adenosine 5'-triphosphate in the TME. Thus, we report a prototype of a bispecific aptamer molecule, which serves as a dual detection platform and recognizes tumor cells only when a given metabolite concentration is elevated in the TME. This system overcomes hurdles in detecting tumor cells solely based on the elevated expression of cell surface markers, providing a universal platform for tumor targeting and sensing.
Collapse
Affiliation(s)
- Natalie Boykoff
- Ph.D.
Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| | - Lina Freage
- Department
of Chemistry, Lehman College, The City University
of New York, 250 Bedford
Park Blvd., West, Bronx, New York 10468, United
States
| | - Jared Lenn
- The
Bronx High School of Science, 75 W 205th Street, Bronx, New York 10468, United States
| | - Prabodhika Mallikaratchy
- Department
of Chemistry, Lehman College, The City University
of New York, 250 Bedford
Park Blvd., West, Bronx, New York 10468, United
States
- Ph.D.
Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
- Ph.D.
Program in Molecular, Cellular and Developmental Biology, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| |
Collapse
|