1
|
Padhy A, Gupta M, Das A, Farook I, Dutta T, Datta S, Datta R, Gupta SS. Lysosome-Specific Delivery of β-Glucosidase Enzyme Using Protein-Glycopolypeptide Conjugate via Protein Engineering and Bioconjugation. Bioconjug Chem 2025; 36:383-394. [PMID: 39988831 DOI: 10.1021/acs.bioconjchem.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Lysosomal enzyme replacement therapy (ERT) holds potential for treating lysosomal storage disorders, but achieving targeted delivery of deficient therapeutic enzymes remains a significant challenge. This study presents a novel approach for the lysosome-specific delivery of the β-glucosidase (B8CYA8) enzyme by covalently conjugating lysosome-targeting mannose-6-phosphate functionalized glycopolypeptides (M6P-GP). We used a protein-glycopolypeptide conjugate developed through advanced protein engineering and bioconjugation techniques. By conjugating β-glucosidase to M6P-GP that has a high affinity for the cation-independent mannose-6-phosphate receptors (CI-MPR) and lysosomal receptors, we enhance the enzyme's selective intracellular uptake and lysosome-specific localization. To attain maximum activity of the near-native enzyme after delivery, we have designed and synthesized an acetal linkage containing the pH-responsive linker maleimide-acetal-azide (MAA), which will cleave in the lysosomal acidic pH to detach the glycopolypeptide from the protein backbone. We demonstrated the efficient cellular uptake of the protein-glycopolypeptide conjugate and showed targeted lysosome delivery, leading to increased enzymatic activity compared to untreated cells. Our results proved that the approach mainly improves the specificity and efficiency of enzyme delivery, particularly into lysosomes, which may enable new methods for ERT. These findings suggest that protein-glycopolypeptide conjugates could represent a class of bioconjugates to design targeted enzyme therapies, offering a pathway to the effective treatment of Gaucher disease (GD) and potentially other related lysosomal storage disorders.
Collapse
Affiliation(s)
- Abinash Padhy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Mani Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Apurba Das
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Isha Farook
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tahiti Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Supratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
- Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
2
|
Alhowyan AA, Harisa GI. From Molecular Therapies to Lysosomal Transplantation and Targeted Drug Strategies: Present Applications, Limitations, and Future Prospects of Lysosomal Medications. Biomolecules 2025; 15:327. [PMID: 40149863 PMCID: PMC11940627 DOI: 10.3390/biom15030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Lysosomes are essential intracellular organelles involved in plentiful cellular processes such as cell signaling, metabolism, growth, apoptosis, autophagy, protein processing, and maintaining cellular homeostasis. Their dysfunction is linked to various diseases, including lysosomal storage disorders, inflammation, cancer, cardiovascular diseases, neurodegenerative conditions, and aging. This review focuses on current and emerging therapies for lysosomal diseases (LDs), including small medicines, enzyme replacement therapy (ERT), gene therapy, transplantation, and lysosomal drug targeting (LDT). This study was conducted through databases like PubMed, Google Scholar, Science Direct, and other research engines. To treat LDs, medicines target the lysosomal membrane, acidification processes, cathepsins, calcium signaling, mTOR, and autophagy. Moreover, small-molecule therapies using chaperones, macro-therapies like ERT, gene therapy, and gene editing technologies are used as therapy for LDs. Additionally, endosymbiotic therapy, artificial lysosomes, and lysosomal transplantation are promising options for LD management. LDT enhances the therapeutic outcomes in LDs. Extracellular vesicles and mannose-6-phosphate-tagged nanocarriers display promising approaches for improving LDT. This study concluded that lysosomes play a crucial role in the pathophysiology of numerous diseases. Thus, restoring lysosomal function is essential for treating a wide range of conditions. Despite endosymbiotic therapy, artificial lysosomes, lysosomal transplantation, and LDT offering significant potential for LD control, there are ample challenges regarding safety and ethical implications.
Collapse
Affiliation(s)
- Adel A. Alhowyan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Gamaleldin I. Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| |
Collapse
|
3
|
Bag S, Seth A, Ghosh D, Datta R, De P. Degradable Theranostic Polyurethane for Macrophage-Targeted Antileishmanial Drug Delivery. Biomacromolecules 2025; 26:967-980. [PMID: 39752556 DOI: 10.1021/acs.biomac.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The present investigation aims to develop a reactive oxygen species (ROS) and esterase-responsive biodegradable mannosylated polyurethane to effectively deliver the encapsulated antileishmanial drug amphotericin B (AmB) selectively to infected macrophage cells. Owing to suitable amphiphilic balance, the as-synthesized glycosylated polyurethane (PU2M) with aryl boronic ester-based diol (M2) moiety as ROS-trigger, water-soluble mannose pendants, and fluorescent 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) chain ends for bioimaging formed nanoaggregates in an aqueous medium as confirmed by 1H NMR spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and critical aggregation concentration (CAC) measurements. Aided by two endogenous stimuli present in phagolysosome, ROS and esterase, AmB-encapsulated polymeric nanoaggregates as drug delivery vehicles achieved an efficient reduction of both L. donovani and L. major intracellular amastigote burden compared to the free AmB. Overall, this work illustrated a promising therapeutic application of dual endogenous stimuli-triggered degradable theranostic polyurethane for target-specific drug delivery of AmB, to mitigate leishmaniasis.
Collapse
Affiliation(s)
- Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Arunava Seth
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| |
Collapse
|
4
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Xu J, Zhang K, Zhang G. Prognostic Lysosome-Related Biomarkers for Predicting Drug Candidates in Hepatocellular Carcinoma: An Insilco Analysis. J Hepatocell Carcinoma 2023; 10:459-472. [PMID: 36974330 PMCID: PMC10039712 DOI: 10.2147/jhc.s401338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Background Lysosomes play an important role in enhancing tumorigenesis and chemoresistance in hepatocellular carcinoma (HCC). Therefore, a detailed analysis of the role of lysosome-related genes could improve the poor prognosis of HCC patients. Methods Lysosome-associated genes were downloaded from the GO and Genome Enrichment Analysis (GSEA) databases. After analyzing lysosome-associated differentially expressed genes (DEGs) between the TCGA and GTEx cohorts, we used univariate Cox regression, LASSO-Cox regression, stepwise Cox regression, and multivariate Cox regression analyses to build a predictive risk model. The ICGC cohort was used as a test cohort for the prognostic signature's validation. It was also assessed how significantly the signature affected the tumor microenvironment (TME) and sensitivity to immune checkpoint inhibitors. To investigate the expression of this signature in clinical samples, qRT-PCR and immunohistochemistry (IHC) were carried out in 50 normal tissues and 59 HCC tissues. Results A total of 894 lysosome-associated genes were obtained. After identifying 113 lysosome-associated DEGs, we constructed a five-gene prognostic signature (RRAGD, AP1M2, CRHBP, NCSTN, and SLCO4C1) that can be effectively applied to the prognostic classification of HCC patients in TCGA and ICGC cohorts. Additionally, we discovered that this signature can affect the proportion of macrophage infiltration in TME. We also evaluated several tumor-sensitive medicines that affect this signature. Finally, we discovered that HCC tissues had lower amounts of CRHBP compared to normal tissues by the qRT-PCR and IHC assay. Conclusion We developed and validated a predictive signature of five lysosome-related genes for HCC patients and verified the downregulation of CRHBP expression in clinical samples, which may provide fresh perspectives for customized immunotherapy.
Collapse
Affiliation(s)
- Junxiu Xu
- Department of Medical Laboratory, Zhengzhou University Fifth Affiliated Hospital, Zhengzhou, People’s Republic of China
| | - Kai Zhang
- Department of Medical Laboratory, Zhengzhou University Third Affiliated Hospital, Zhengzhou, People’s Republic of China
| | - Genhao Zhang
- Department of Blood Transfusion, Zhengzhou University First Affiliated Hospital, Zhengzhou, People’s Republic of China
- Correspondence: Genhao Zhang, Zhengzhou University First Affiliated Hospital, Jianshe Road 1#, Zhengzhou, 450052, People’s Republic of China, Email
| |
Collapse
|
7
|
In Vitro Cell Death Mechanisms Induced by Dicoma anomala Root Extract in Combination with ZnPcS 4 Mediated-Photodynamic Therapy in A549 Lung Cancer Cells. Cells 2022; 11:cells11203288. [PMID: 36291155 PMCID: PMC9600060 DOI: 10.3390/cells11203288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Globally, lung cancer has remained the leading cause of morbidity and mortality in men and women. To enhance photodynamic therapeutic effects in vitro, the present study was designed to reduce dose-dependence in photodynamic therapy (PDT) and evaluate the anticancer effects of Dicoma anomala (D. anomala) root extracts (i.e., chloroform (Chl), ethyl acetate (EtOAc), and methanol (MeOH)) on A549 lung cancer cells. The most active extract of D. anomala (D.A) was used to establish the 50% inhibitory concentration (IC50), which was further used to evaluate the anticancer efficacy of D.A in combination with ZnPcS4-mediated PDT IC50. The study further evaluated cell death mechanisms by cell viability/ cytotoxicity (LIVE/DEADTM assay), flow cytometry (Annexin V-fluorescein isothiocyanate (FITC)-propidium iodide (PI) staining), immunofluorescence (p38, p53, Bax, and caspase 3 expressions), and fluorometric multiplex assay (caspase 8 and 9) 24 h post-treatment with IC50 concentrations of ZnPcS4-mediated PDT and D.A MeOH root extract. Morphological changes were accompanied by a dose-dependent increase in cytotoxicity, decrease in viability, and proliferation in all experimental models. Apoptosis is the highly favored cell death mechanism observed in combination therapy groups. Apoptotic activities were supported by an increase in the number of dead cells in the LIVE/DEADTM assay, and the upregulation of p38, p53, Bax, caspase 3, 8, and 9 apoptotic proteins. In vitro experiments confirmed the cytotoxic and antiproliferative effects of D.A root extracts in monotherapy and in combination with ZnPcS4-mediated PDT. Taken together, our findings demonstrated that D.A could be a promising therapeutic candidate worth exploring in different types of cancer.
Collapse
|
8
|
Khorshid S, Montanari M, Benedetti S, Moroni S, Aluigi A, Canonico B, Papa S, Tiboni M, Casettari L. A microfluidic approach to fabricate sucrose decorated liposomes with increased uptake in breast cancer cells. Eur J Pharm Biopharm 2022; 178:53-64. [DOI: 10.1016/j.ejpb.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
9
|
Jain V, Bose S, Arya AK, Arif T. Lysosomes in Stem Cell Quiescence: A Potential Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:1618. [PMID: 35406389 PMCID: PMC8996909 DOI: 10.3390/cancers14071618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are cellular organelles that regulate essential biological processes such as cellular homeostasis, development, and aging. They are primarily connected to the degradation/recycling of cellular macromolecules and participate in cellular trafficking, nutritional signaling, energy metabolism, and immune regulation. Therefore, lysosomes connect cellular metabolism and signaling pathways. Lysosome's involvement in the critical biological processes has rekindled clinical interest towards this organelle for treating various diseases, including cancer. Recent research advancements have demonstrated that lysosomes also regulate the maintenance and hemostasis of hematopoietic stem cells (HSCs), which play a critical role in the progression of acute myeloid leukemia (AML) and other types of cancer. Lysosomes regulate both HSCs' metabolic networks and identity transition. AML is a lethal type of blood cancer with a poor prognosis that is particularly associated with aging. Although the genetic landscape of AML has been extensively described, only a few targeted therapies have been produced, warranting the need for further research. This review summarizes the functions and importance of targeting lysosomes in AML, while highlighting the significance of lysosomes in HSCs maintenance.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center, Department of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA;
| | - Swaroop Bose
- Department of Dermatology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA;
| | - Awadhesh K. Arya
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|