1
|
Wang H, Yang L, Yang Y, Zhang D, Hao G. Multifunctional natural starch-based hydrogels: Critical characteristics, formation mechanisms, various applications, future perspectives. Carbohydr Polym 2025; 357:123458. [PMID: 40158989 DOI: 10.1016/j.carbpol.2025.123458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
With the growth of the global population and increasing concern for environmental issues, the development of sustainable and eco-friendly materials has become increasingly important. Starch, as a renewable resource, is one of the most abundant polysaccharides in nature, with the advantages of good biocompatibility, high biodegradability, and low cost. Starch-based hydrogels (SBHs) have attracted widespread attention due to their unique physical and chemical properties. This article provides a comprehensive review of the latest research progress in SBHs, discussing their main characteristics, formation mechanisms, diverse applications, and future development trends. First, it outlines the biocompatibility, degradability, water absorption and retention, environmental responsiveness, and mechanical strength of SBHs. Then, it elaborates in detail on the formation mechanisms of SBHs, including physical crosslinking (hydrogen bonding, electrostatic interactions, host-guest and coordination interactions), chemical crosslinking (such as initiators, heat, light, radiation, and click reactions), and synergistic effects. Subsequently, it analyzes the applications of SBHs in cutting-edge fields such as flexible sensors, medical dressings, drug delivery, tissue engineering, soil protection, wastewater treatment, and food packaging. Finally, it summarizes the challenges in current research and provides an outlook on future development trends, emphasizing the importance of further optimizing the performance of SBHs to meet broader industrial needs and environmental protection goals. This review not only provides a systematic theoretical framework for the study of SBHs but also charts a course for their innovative applications in the field of sustainable materials, playing a significant role in advancing the continuous development of this area.
Collapse
Affiliation(s)
- Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Dongsheng Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gangling Hao
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
2
|
Jafri NF, Salleh KM, Ghazali NA, Hua CC, Wang C, Zakaria S. Effects of carboxymethyl cellulose mesofiber with chitosan incorporation as reinforcing agent in regenerated cellulose hydrogel. Int J Biol Macromol 2025; 303:140707. [PMID: 39920938 DOI: 10.1016/j.ijbiomac.2025.140707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/15/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
To maintain the versatility of a hydrogel, extensive modifications are necessary, particularly to overcome the daunting mechanical trait of this material. In agriculture especially, achieving the desired balance between strength and high water absorption ability with this polymer is a significant challenge. Therefore, this study used and evaluated both carboxymethyl cellulose (CMC) mesofiber (CMCF) and CMC-chitosan mesofiber (CMC/CHF) as a reinforcing agent at varying concentrations in the widely known regenerated cellulose hydrogel. These fibers were fined and revamped as mesofiber before being integrated into the cellulose solution for crosslinking and formation stages. The hydrogel filled with 2 wt% mesofiber, especially CMC/CHF exhibited the highest storage modulus value (3300 Pa), compression strength (0.315 MPa), and thermal stability, showing the resistivity of this composite towards external pressure. Morphologically, the distribution of smaller pores within the mesofiber-reinforced hydrogel improved along with the water absorption ability. The composite hydrogels, however, demonstrated lower transparency compared to the plain hydrogel due to the high loading of CMCF and complex CMC/CHF. The utilization of CMC/CHF is especially successful and effective in enhancing the resulting composite's mechanical strength and hydrophilicity. Thus, it is expected to be beneficial as a planting medium that provides both functionality and vitality.
Collapse
Affiliation(s)
- Nur Fathihah Jafri
- Bioresource and Biorefinery Group, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Kushairi Mohd Salleh
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nursyamimi Ahmad Ghazali
- Bioresource and Biorefinery Group, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Chia Chin Hua
- Bioresource and Biorefinery Group, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Chunhong Wang
- School of Textile Science and Engineering, Tiangong University, Xiqing District, Tianjin, PR China
| | - Sarani Zakaria
- Bioresource and Biorefinery Group, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
3
|
Li B, Wang J, Zhang J, Jin Q, Wang H, Li W. Biobased hydrophobic liquid mulch film from soybean oil and starch for enhanced terraced field cultivation. Int J Biol Macromol 2024; 283:137490. [PMID: 39549798 DOI: 10.1016/j.ijbiomac.2024.137490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Terraced agriculture faces soil loss during rainstorms leading to natural disasters and crop growth impediments. This study describes a novel biobased hydrophobic liquid mulch film comprised of waste soybean oil, starch, and acrylate monomers that can be used to enhance terraced field cultivation. The novel film, optimized at a 3:7 soybean oil to acrylate monomers ratio, exhibited superior spray ability, reduced wicking, and excellent film formation, which are crucial for its effectiveness as a water erosion barrier. The wet state of the SOSA film demonstrated optimal impact resistance, with increased elongation at break and reduced breaking strength compared to its dry state, facilitating seedling emergence. It significantly improved soil moisture retention (4.8-5.7 %) and temperature (0.9-5.6 °C) and boosted maize seed germination by 28 %. Under extreme conditions of a 24° slope and 90 mm/h rainfall, the SOSA film achieved an 80.6 % reduction in soil loss and a 57.4 % increase in pakchoi yield over bare soil. This study's comprehensive analyses confirmed the film's formation mechanism and provided a scientific basis for its practical application performance, highlighting the film's unprecedented success in using waste materials for sustainable terrace farming and its potential as a transformative approach to soil conservation and crop productivity.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ju Wang
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jiabo Zhang
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qidong Jin
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Haoyu Wang
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Wenzhuo Li
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
4
|
Gopinath G, Ayyasamy S, Shadap M, Shanmugaraj P, Banu A, Hema M. Cellulose acetate-based polymer electrolyte for energy storage application with the influence of BaTiO 3 nanofillers on the electrochemical properties: A progression in biopolymer-EDLC technology. Int J Biol Macromol 2024; 281:136416. [PMID: 39389480 DOI: 10.1016/j.ijbiomac.2024.136416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
The bio-based solid polymer electrolyte serves as a promising choice for the next generation of energy storage devices to meet the requirement of green chemistry. In the current research, a green plasticized magnesium ion-conducting biopolymer electrolyte was developed using simple solution casting method for Electric Double Layer Capacitors (EDLC) applications. The biopolymer Cellulose Acetate (CA) as the host polymer, with varying concentrations of BaTiO3 as the nanofiller, Mg(CF3SO3)2 as the ionic dopant, and PEG as the plasticizer. A 2 wt% addition of BaTiO3 to the biopolymer electrolyte exhibits maximum conductivity measuring 2.4 × 10-3 S/cm. Linear Sweep Voltammetry (LSV) analysis demonstrates maximum stability voltage of 3.51 V. The ionic transference number (tion) and (tMg2+) were determined to be 0.99 and 0.41 respectively. The fabricated EDLC device with the same electrolyte showed polarisation curve without any noticeable peaks in the Cyclic Voltammetry (CV) plot, indicating no redox reactions occurring at the electrode-electrolyte interface. Galvanostatic Charge Discharge (GCD) results showed excellent coulombic efficiency, stability and Energy Density and Power Density performance over 2000 cycles. The incorporation of BaTiO3 into biopolymer membranes presents a viable approach towards sustainable energy storage solutions by enhancing the energy storage capacity of EDLC devices.
Collapse
Affiliation(s)
- Gokul Gopinath
- Division of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India
| | - Sakunthala Ayyasamy
- Division of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India.
| | - Matbiangthew Shadap
- Division of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India
| | - Pavithra Shanmugaraj
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| | - A Banu
- Department of Science and Humanities, School of Engineering, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 108, Tamil Nadu, India
| | - M Hema
- Department of Physics, Kamaraj College of Engineering and Technology, K. Vellakulam, Near Virudhunagar 625 701, Tamilnadu, India
| |
Collapse
|
5
|
Kiran M, Haq F, Ullah M, Ullah N, Chinnam S, Ashique S, Mishra N, Wani AW, Farid A. Starch-based bio-membrane for water purification, biomedical waste, and environmental remediation. Int J Biol Macromol 2024; 282:137033. [PMID: 39488302 DOI: 10.1016/j.ijbiomac.2024.137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
This review article explores the utilization of starch-based materials as smart materials for the removal of dyes and heavy metals from wastewater, highlighting their cost-effectiveness, biodegradability, and biocompatibility. It addresses the critical need for clean water, emphasizing the contamination caused by industrial activities, such as printing, textile, cosmetic, and leather tanning industries. Starch and its derivatives demonstrate significant potential in water purification technology, effectively removing toxicants through hydrogen bonding, electrostatic interactions, and complexation. The review also discusses the application of starch-based materials in the biomedical field, particularly as drug carriers. Starch-based microspheres, hydrogels, nano-spheres, and nano-composites exhibit sustained drug-release properties and are effective in transporting various drugs, including DOX, quercetin, 5-Fluorouracil, glycyrrhizic acid, paclitaxel, tetracycline hydrochloride, amoxicillin, ciprofloxacin, and moxifloxacin. These materials show good antimicrobial activity against a range of pathogens, including C. albicans, E. coli, S. aureus, C. neoformance, B. subtilis, A. niger, A. fumigatus, and A. terreus. While highlighting the significant achievements of starch-based materials, the review also discusses current limitations and areas for future development. Key weaknesses include the need for enhanced adsorption capacities and the challenge of scaling up production for industrial applications. The review concludes by identifying development directions, such as improving functionalization techniques and exploring new applications in water purification and drug delivery systems. This article aims to assist researchers in advancing the field of starch-based materials for environmental and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Kiran
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I. Khan 29050, Pakistan
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Ullah
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Punjab 144411, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan.
| |
Collapse
|
6
|
Ji Y, Li T, Abo-Dief HM, Abualnaja KM, Wei M, Zhang J, Wang X, Zhang J, Guo Z, El-Bahy ZM, Wei H. Polyacrylamide/starch hydrogels doped with layered double hydroxides towards strain sensing applications. Int J Biol Macromol 2024; 280:136333. [PMID: 39482133 DOI: 10.1016/j.ijbiomac.2024.136333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Electrically conductive hydrogels have attracted enormous attention due to the rapid development of flexible electronics. In this paper, the application of layered double hydroxides (LDHs) in the field of conductive hydrogel for strain sensing is firstly explored. LDHs are introduced to the polyacrylamide (PAM)/starch (St) semi-interpenetrating network (SIPN) to fabricate conductive PAM/St/LDHs (PSL) hydrogels for strain sensing applications. The results show that LDHs incorporated into PAM/St SIPN as inorganic nano fillers not only improve the mechanical strength, but also innovatively endow the hydrogel with electrical conductivity properties. The PSL hydrogels exhibit excellent mechanical properties (with an elongation strain of 1750 % and a fracture strength of 0.22 MPa) and decent sensing properties (with a gauge factor of 2.73). As a proof of concept, an 8*8 sensing array based on PSL hydrogels is designed to realize the visualization of pressure sensing, demonstrating the broad prospect of PSL hydrogels in applications of human-computer interaction, flexible wearable and soft robotics.
Collapse
Affiliation(s)
- Yanxiu Ji
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tuo Li
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hala M Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khamael M Abualnaja
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mojieming Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jing Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuanye Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jing Zhang
- School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030021, China
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Huige Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
López-Maldonado EA, Abdellaoui Y, Abu Elella MH, Abdallah HM, Pandey M, Anthony ET, Ghimici L, Álvarez-Torrellas S, Pinos-Vélez V, Oladoja NA. Innovative biopolyelectrolytes-based technologies for wastewater treatment. Int J Biol Macromol 2024; 273:132895. [PMID: 38848850 DOI: 10.1016/j.ijbiomac.2024.132895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Developing eco-friendly, cost-effective, and efficient methods for treating water pollutants has become paramount in recent years. Biopolyelectrolytes (BPEs), comprising natural polymers like chitosan, alginate, and cellulose, have emerged as versatile tools in this pursuit. This review offers a comprehensive exploration of the diverse roles of BPEs in combating water contamination, spanning coagulation-flocculation, adsorption, and filtration membrane techniques. With ionizable functional groups, BPEs exhibit promise in removing heavy metals, dyes, and various pollutants. Studies showcase the efficacy of chitosan, alginate, and pectin in achieving notable removal rates. BPEs efficiently adsorb heavy metal ions, dyes, and pesticides, leveraging robust adsorption capacity and exceptional mechanical properties. Furthermore, BPEs play a pivotal role in filtration membrane techniques, offering efficient separation systems with high removal rates and low energy consumption. Despite challenges related to production costs and property variability, their environmentally friendly, biodegradable, renewable, and recyclable nature positions BPEs as compelling candidates for sustainable water treatment technologies. This review delves deeper into BPEs' modification and integration with other materials; these natural polymers hold substantial promise in revolutionizing the landscape of water treatment technologies, offering eco-conscious solutions to address the pressing global issue of water pollution.
Collapse
Affiliation(s)
| | - Youness Abdellaoui
- CONAHCyT-Cinvestav Saltillo. Sustainability of Natural Resources and Energy, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe. Ramos Arizpe, Coahuila C.P. 25900, Mexico.
| | - Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6AD, UK; Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research institute, National Research Center, Dokki, Giza 12622, Egypt
| | - Mayank Pandey
- Department of Electronics, Kristu Jayanti College, Bangalore-560077, India
| | | | - Luminita Ghimici
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Silvia Álvarez-Torrellas
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense, s/n, 28040 Madrid, Spain
| | - Verónica Pinos-Vélez
- Departamento de Biociencias, Ecocampus Balzay, Universidad de Cuenca, Cuenca 010202, Ecuador; Departamento de Recursos Hídricos y Ciencias Ambientales, Ecocampus Balzay, Universidad de Cuenca, Ecuador
| | | |
Collapse
|
8
|
Md Yusop AH, Wan Ali WFF, Jamaludin FH, Szali Januddi F, Sarian MN, Saad N, Wong TW, Hidayat A, Nur H. Evaluation of in vitro corrosion behavior and biocompatibility of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron for bone scaffolds applications. Biotechnol J 2024; 19:e2300464. [PMID: 38509814 DOI: 10.1002/biot.202300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
The present study evaluates the corrosion behavior of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron (PXDD140/HA-Fe) and its cell-material interaction aimed for temporary bone scaffold applications. The physicochemical analyses show that the addition of 20 wt.% HA into the PXDD polymers leads to a higher crystallinity and lower surface roughness. The corrosion assessments of the PXDD140/HA-Fe evaluated by electrochemical methods and surface chemistry analysis indicate that HA decelerates Fe corrosion due to a lower hydrolysis rate following lower PXDD content and being more crystalline. The cell viability and cell death mode evaluations of the PXDD140/HA-Fe exhibit favorable biocompatibility as compared to bare Fe and PXDD-Fe scaffolds owing to HA's bioactive properties. Thus, the PXDD140/HA-Fe scaffolds possess the potential to be used as a biodegradable bone implant.
Collapse
Affiliation(s)
- Abdul Hakim Md Yusop
- Materials Research & Consultancy Group (MRCG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Wan Fahmin Faiz Wan Ali
- Materials Research & Consultancy Group (MRCG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Farah Hidayah Jamaludin
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Fatihhi Szali Januddi
- Advanced Facilities Engineering Technology Research Cluster (AFET), Plant Engineering Technology (PETech) Section, Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Masai, Johor, Malaysia
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor, Malaysia
| | - Norazalina Saad
- Laboratory of UPM - MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tuck-Whye Wong
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Arif Hidayat
- Department of Physics, Faculty of Mathematics and Natural Sciences Universitas Negeri Malang, Malang, Indonesia
| | - Hadi Nur
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
- Center of Advanced Materials for Renewable Energy (CAMRY), Universiti Negeri Malang, Malang, Indonesia
| |
Collapse
|
9
|
Yang Y, Liang Z, Zhang R, Zhou S, Yang H, Chen Y, Zhang J, Yin H, Yu D. Research Advances in Superabsorbent Polymers. Polymers (Basel) 2024; 16:501. [PMID: 38399879 PMCID: PMC10892691 DOI: 10.3390/polym16040501] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Superabsorbent polymers are new functional polymeric materials that can absorb and retain liquids thousands of times their masses. This paper reviews the synthesis and modification methods of different superabsorbent polymers, summarizes the processing methods for different forms of superabsorbent polymers, and organizes the applications and research progress of superabsorbent polymers in industrial, agricultural, and biomedical industries. Synthetic polymers like polyacrylic acid, polyacrylamide, polyacrylonitrile, and polyvinyl alcohol exhibit superior water absorption properties compared to natural polymers such as cellulose, chitosan, and starch, but they also do not degrade easily. Consequently, it is often necessary to modify synthetic polymers or graft superabsorbent functional groups onto natural polymers, and then crosslink them to balance the properties of material. Compared to the widely used superabsorbent nanoparticles, research on superabsorbent fibers and gels is on the rise, and they are particularly notable in biomedical fields like drug delivery, wound dressing, and tissue engineering.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Z.L.); (R.Z.); (S.Z.); (H.Y.); (Y.C.); (J.Z.); (H.Y.)
| | | | | | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Z.L.); (R.Z.); (S.Z.); (H.Y.); (Y.C.); (J.Z.); (H.Y.)
| |
Collapse
|
10
|
Matmin J, Ibrahim SI, Mohd Hatta MH, Ricky Marzuki R, Jumbri K, Nik Malek NAN. Starch-Derived Superabsorbent Polymer in Remediation of Solid Waste Sludge Based on Water–Polymer Interaction. Polymers (Basel) 2023; 15:polym15061471. [PMID: 36987251 PMCID: PMC10051928 DOI: 10.3390/polym15061471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The purpose of this study is to assess water–polymer interaction in synthesized starch-derived superabsorbent polymer (S-SAP) for the treatment of solid waste sludge. While S-SAP for solid waste sludge treatment is still rare, it offers a lower cost for the safe disposal of sludge into the environment and recycling of treated solid as crop fertilizer. For that to be possible, the water–polymer interaction on S-SAP must first be fully comprehended. In this study, the S-SAP was prepared through graft polymerization of poly (methacrylic acid-co-sodium methacrylate) on the starch backbone. By analyzing the amylose unit, it was possible to avoid the complexity of polymer networks when considering S-SAP using molecular dynamics (MD) simulations and density functional theory (DFT). Through the simulations, formation of hydrogen bonding between starch and water on the H06 of amylose was assessed for its flexibility and less steric hindrance. Meanwhile, water penetration into S-SAP was recorded by the specific radial distribution function (RDF) of atom–molecule interaction in the amylose. The experimental evaluation of S-SAP correlated with high water capacity by measuring up to 500% of distilled water within 80 min and more than 195% of the water from solid waste sludge for 7 days. In addition, the S-SAP swelling showed a notable performance of a 77 g/g swelling ratio within 160 min, while a water retention test showed that S-SAP was capable of retaining more than 50% of the absorbed water within 5 h of heating at 60 °C. The water retention of S-SAP adheres to pseudo-second-order kinetics for chemisorption reactions. Therefore, the prepared S-SAP might have potential applications as a natural superabsorbent, especially for the development of sludge water removal technology.
Collapse
Affiliation(s)
- Juan Matmin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia UTM, Johor Bahru 81310, Johor, Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia UTM, Johor Bahru 81310, Johor, Malaysia
- Correspondence: ; Tel.: +60-7-5535581
| | - Salizatul Ilyana Ibrahim
- Centre of Foundation Studies, Universiti Teknologi MARA Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Selangor, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, Johor Bahru 81750, Johor, Malaysia
| | - Raidah Ricky Marzuki
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia UTM, Johor Bahru 81310, Johor, Malaysia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Nik Ahmad Nizam Nik Malek
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia UTM, Johor Bahru 81310, Johor, Malaysia
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia UTM, Johor Bahru 81310, Johor, Malaysia
| |
Collapse
|
11
|
Reddy YN, De A, Paul S, Pujari AK, Bhaumik J. In Situ Nanoarchitectonics of a MOF Hydrogel: A Self-Adhesive and pH-Responsive Smart Platform for Phototherapeutic Delivery. Biomacromolecules 2023; 24:1717-1730. [PMID: 36897993 DOI: 10.1021/acs.biomac.2c01489] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Metal-organic frameworks (MOFs) have dramatically changed the fundamentals of drug delivery, catalysis, and gas storage as a result of their porous geometry, controlled architecture, and ease of postsynthetic modification. However, the biomedical applications of MOFs still remain a less explored area due to the constraints associated with handling, utilizing, and site-specific delivery. The major drawbacks associated with the synthesis of nano-MOFs are related to the lack of control over particle size and inhomogeneous dispersion during doping. Therefore, a smart strategy for the in situ growth of a nano-metal-organic framework (nMOF) has been devised to incorporate it into a biocompatible polyacrylamide/starch hydrogel (PSH) composite for therapeutic applications. In this study, the post-treatment of zinc metal ion cross-linked PSH with the ligand solution generated the nZIF-8@PAM/starch composites (nZIF-8, nano-zeolitic imidazolate framework-8). The ZIF-8 nanocrystals thus formed have been found to be evenly dispersed throughout the composites. This newly designed nanoarchitectonics of an MOF hydrogel was found to be self-adhesive, which also exhibited improved mechanical strength, a viscoelastic nature, and a pH-responsive behavior. Taking advantage of these properties, it has been utilized as a sustained-release drug delivery platform for a potential photosensitizer drug (Rose Bengal). The drug was initially diffused into the in situ hydrogel, and then the entire scaffold was analyzed for its potential in photodynamic therapy against bacterial strains such as E. coli and B. megaterium. The Rose Bengal loaded nano-MOF hydrogel composite exhibited remarkable IC50 values within the range of 7.37 ± 0.04 and 0.51 ± 0.05 μg/mL for E. coli and B. megaterium. Further, reactive oxygen species (ROS) directed antimicrobial potential was validated using a fluorescence-based assay. This smart in situ nanoarchitectonics hydrogel platform can also serve as a potential biomaterial for topical treatment including wound healing, lesions, and melanoma.
Collapse
Affiliation(s)
- Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Angana De
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Shatabdi Paul
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Anil Kumar Pujari
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|