1
|
Bhushan R, Trivedi R, Raj R, Rani A, Rai S, Tripathi A, Rawat SG, Kumar A, Kumar D, Dubey PK. Integration of transcriptomics and metabolomics data revealed role of insulin resistant SNW1 gene in the pathophysiology of gestational diabetes. Sci Rep 2025; 15:4159. [PMID: 39905161 PMCID: PMC11794551 DOI: 10.1038/s41598-025-88485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Gestational Diabetes Mellitus (GDM) is an emerging maternal health problem with increasing incidences. The lack of complete understanding of its pathophysiological mechanisms and novel regulatory biomarkers makes early diagnosis difficult. High-throughput RNA sequencing and computational bioinformatics analyses were conducted to identify novel hub genes, and their regulatory mechanisms were validated through qRT-PCR, western blot, and siRNA-mediated knockdown studies. Intermediate metabolites and circulatory levels of amino acids in the serum of GDM patients and healthy controls were measured. Transcriptomic studies identified SNW1 as the most sensitive and specific biomarker, significantly up-regulated in GDM (fold change = 1.09; p < 0.001). Metabolomic studies indicated significantly elevated gluconeogenesis in GDM, evidenced by decreased levels of alanine and increased levels of pyruvate and glucose compared to controls. siRNA-mediated knockdown of SNW1 in PANC1 cells resulted in significant down-regulation of alanine aminotransferase (ALT/GPT) and insulin receptor substrate (IRS1), while glucose transporters (GLUT2/GLUT4) and insulin (INS) were significantly up-regulated at both mRNA and protein levels. This study identified SNW1 as a novel insulin-resistant gene that induces hyperglycemia by elevating gluconeogenesis and decreasing glucose uptake. SNW1 may be considered a potential therapeutic target with clinical utility for the management of GDM.
Collapse
Affiliation(s)
- Ravi Bhushan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Rimjhim Trivedi
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ritu Raj
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Anjali Rani
- Department of Obstetrics & Gynaecology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sangeeta Rai
- Department of Obstetrics & Gynaecology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anima Tripathi
- Department of Zoology, Banaras Hindu University, Mahila Mahavidalaya, Varanasi, 221005, Uttar Pradesh, India
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Collie B, Troisi J, Lombardi M, Symes S, Richards S. The Current Applications of Metabolomics in Understanding Endometriosis: A Systematic Review. Metabolites 2025; 15:50. [PMID: 39852392 PMCID: PMC11767062 DOI: 10.3390/metabo15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
Endometriosis is a common gynecological disease that affects approximately 10-15% of reproductive-aged women worldwide. This debilitating disease has a negative impact on the quality of life of those affected. Despite this condition being very common, the pathogenesis is not well understood. Metabolomics is the study of the array of low-weight metabolites in a given sample. This emerging field of omics-based science has proved to be effective at furthering the understanding of endometriosis. In this systematic review, we seek to provide an overview of the application of metabolomics in endometriosis. We highlight the use of metabolomics in locating biomarkers for identification, understanding treatment mechanisms and symptoms, and relating external factors to endometriosis. The literature search took place in the Web of Science, Pubmed, and Google Scholar based on the keywords "metabolomics" AND "endometriosis" or "metabolome" AND "endometriosis". We found 58 articles from 2012 to 2024 that met our search criteria. Significant alterations of lipids, amino acids, as well as other compounds were present in human and animal models. Discrepancies among studies of significantly altered metabolites make it difficult to make general conclusions on the metabolic signature of endometriosis. However, several individual metabolites were elevated in multiple studies of women with endometriosis; these include 3-hydroxybutyrate, lactate, phosphatidic acids, succinate, pyruvate, tetradecenoylcarnitine, hypoxanthine, and xanthine. Accordingly, L-isoleucine and citrate were reduced in multiple studies of women with endometriosis. Including larger cohorts, standardizing testing methods, and studying the individual phenotypes of endometriosis may lead to more separable results.
Collapse
Affiliation(s)
- Blake Collie
- Department of Biology, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Theoreo Srl., Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, Italy
| | - Martina Lombardi
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Theoreo Srl., Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, Italy
| | - Steven Symes
- Department of Chemistry and Physics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
- Section on Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Tennessee College of Medicine, Chattanooga, TN 37403, USA
| | - Sean Richards
- Section on Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Tennessee College of Medicine, Chattanooga, TN 37403, USA
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| |
Collapse
|
3
|
Rastogi A, Tewari P, Pande S, Trivedi R, Agarwal SK, Dubey D, Kumar D. Comparative analysis of clinico-metabolic profiles between St Thomas and del Nido cardioplegia solutions: A pilot study. Perfusion 2024:2676591241311726. [PMID: 39724051 DOI: 10.1177/02676591241311726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Cardioplegia (CP) is integral to myocardial protection during cardiac surgery. Two standard cardioplegic solutions viz. Del Nido solution (DNS) and St Thomas solution (STS) are widely used in cardiac surgeries. The DNS is a single-dose CP that offers superior myocardial protection in adults, and studies have claimed myocardial injury in STS patients. The elevated circulatory level of citric acid cycle intermediate, succinate is a metabolic hallmark of ischemia. Its rapid oxidation after reperfusion causes ischemia-reperfusion (IR) injury through mitochondrial reactive oxygen species production. Succinate has been identified as an early marker of IR injury through blood plasma/serum-based clinical metabolomics studies. The primary objective of the study was metabolomic profiling of succinate from the coronary sinus and venous blood. METHODS Two blood samples each were obtained from coronary sinus (CS) & venous reservoir from patients before the application of aortic cross-clamp and after the release of aortic cross-clamp from 22 patients divided into two groups. The blood-serum metabolic profiles were measured by 800 MHz NMR spectrometer and compared using univariate statistical analysis methods. The study also compared the two groups' cardiopulmonary bypass variables and left ventricle functions. RESULT DNS leads to increased serum levels of succinate in the coronary sinus blood after the reperfusion compared to STS. The results of our study are consistent with a previous study that found DNS administration (90 minutes) increases the inflammatory response in the myocardium. CONCLUSION NMR-based serum metabolomics revealed significantly increased circulatory succinate in coronary sinus blood of patients administered with DNS cardioplegia in comparison to STS cardioplegia. URL- https://ctri.nic.in/Clinicaltrials/login.php.
Collapse
Affiliation(s)
- Amit Rastogi
- Department of Anaesthesiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Prabhat Tewari
- Department of Anaesthesiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Shantanu Pande
- Department of Cardio Vascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Rimjhim Trivedi
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Lucknow, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Surendra Kumar Agarwal
- Department of Cardio Vascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Durgesh Dubey
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Lucknow, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Lucknow, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Li Q, Xu L, Lin Y, Yuan M, Jiao X, Ren Q, Li D, Wang G. Serum Metabolites as Diagnostic Biomarkers in Patients with Endometriosis. Reprod Sci 2024; 31:3719-3728. [PMID: 38649667 DOI: 10.1007/s43032-024-01536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Endometriosis diagnosis is usually delayed. The gold standard for diagnosing endometriosis is laparoscopy, which is invasive and accompanied by several risks. Currently, there are no effective non-invasive biomarkers for diagnosing endometriosis. Here, we investigated whether metabolites whose levels are altered in patients with endometriosis hold potential as diagnostic biomarkers for the disease. This case-control study involved 32 patients with endometriosis and 29 patients with other benign gynecological disease. The diagnosis of all patients was confirmed through postoperative histopathological examination, and the patients were divided into two groups: an endometriosis group (EM) and a control group. Fasting blood was collected and used for non-targeted metabolomic-based detection. The data were processed through principal component analysis, orthogonal partial least squares discriminant analysis, and significance analysis of microarrays. A univariate receiver operating characteristic curve was used to evaluate the diagnostic value of the metabolites. The metabolite profiles of patients with endometriosis were markedly different compared with those of the controls. In addition, several metabolic pathways, including biosynthesis of unsaturated fatty acids, arginine biosynthesis, and glutathione metabolism, were altered. Ornithine and medorinone showed better potential as biomarkers for endometriosis diagnosis than CA125. We analyzed the altered metabolic profiles in patients with endometriosis and found ornithine and medorinone as potential non-invasive biomarkers for endometriosis diagnosis, whereas the combined ornithine-medorinone diagnosis is more valuable. These findings may help advance research on non-invasive diagnostic biomarkers for endometriosis. Further research with an improved study design and a larger cohort should be performed to confirm the diagnostic potential and clinical application of these biomarkers.
Collapse
Affiliation(s)
- Qiuju Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, No.324, Jingwuweiqi Road, Jinan, 250021, People's Republic of China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, People's Republic of China, 250021
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China, 250117
| | - Le Xu
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, People's Republic of China, 250021
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China, 250021
| | - Ying Lin
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, People's Republic of China, 250021
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China, 250021
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, No.324, Jingwuweiqi Road, Jinan, 250021, People's Republic of China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, People's Republic of China, 250021
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China, 250117
| | - Xue Jiao
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, People's Republic of China, 250021
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China, 250021
| | - Qianhui Ren
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, People's Republic of China, 250021
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China, 250021
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, People's Republic of China, 250012
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, No.324, Jingwuweiqi Road, Jinan, 250021, People's Republic of China.
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, People's Republic of China, 250021.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China, 250117.
| |
Collapse
|
5
|
Rastogi S, Verma A, Trivedi R, Shukla A, Kumar D. Clinical metabolomics investigation of rheumatoid arthritis patients receiving ayurvedic whole system intervention. J Ayurveda Integr Med 2024; 15:101009. [PMID: 38972279 PMCID: PMC11264181 DOI: 10.1016/j.jaim.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Arthritis is a common clinical condition seen in Ayurveda clinics. Clinical trials have reported Ayurvedic interventions to be of benefits in many arthritic conditions including Rheumatoid Arthritis (RA). No mechanistic details however are available about how such interventions on their own or as a combination of whole system Ayurveda might be working. OBJECTIVE The study aims to evaluate simultaneously the clinical outcome of Ayurveda whole system (AWS) intervention in RA patients and identifying the serum metabolic signatures which could be useful for diagnosing the disease and monitoring treatment response. MATERIAL AND METHODS RA patients (n = 37) simultaneously diagnosed as Amavata fulfilling the specific inclusion and exclusion criteria were recruited in the study and were given Ayurveda whole system (AWS) intervention comprised of oral medicines, local therapy and dietary recommendation for 3 months. The clinical and serum metabolic changes were investigated for pre-treatment RA patients (baseline RA group, n = 37) and post-treatment RA patients (following treatment of 6-weeks (RA_F, n = 26) and three months (RA_T, n = 36). For comparative serum metabolomics analysis, 57 normal healthy control (HC) subjects were also involved and the serum metabolic profiles were measured at high-field 800 MHz NMR spectrometer. The serum metabolic profiles were compared using multivariate statistical analysis and discriminatory metabolic features were evaluated for diagnostic potential using receiver operating characteristic (ROC) curve analysis. RESULTS A significant reduction in DAS-28 ESR, AAM Score, total swollen joints, total tender joints were observed following AWS intervention. The clinical outcomes were concordant with changes in metabolic profiles of RA patients as these were also shifting towards the normal levels following the intervention. Compared to healthy control (HC) subjects, the sera of baseline RA patients were characterised by increased circulatory level of succinate, lysine, mannose, creatine, and 3-Hydroxybutyrate (3-HB) and decreased levels of alanine. The present study also evaluated the serum metabolic ratios for their discriminatory and diagnostic potential and notably, six metabolic ratios (KHR, KThR, KVR, GHR, PTR and SHR) were found significantly altered (elevated) in baseline RA patients. However, in RA patients receiving AWS treatment, these metabolic changes showed marked convergence towards the metabolic signatures of healthy controls. CONCLUSION This first of its kind study clearly shows the clinical efficacy of Ayurvedic Whole System (AWS) intervention in the management of Rheumatoid Arthritis (RA), as demonstrated by significant improvements in key clinical parameters. The intervention not only alleviated symptoms but also induced a profound metabolic shifting towards normalization; thus, underscoring the potential of AWS intervention to modulate cellular metabolism in a manner that facilitates a return to homeostasis in RA patients. However, future studies are imperative to confirm these preliminary observations and delineate the underlying mechanisms of action of intervention in cases of RA.
Collapse
Affiliation(s)
- Sanjeev Rastogi
- Ayurveda -Arthritis Treatment and Advanced Research Center (A-ATARC), Department of Kaya Chikitsa, State Ayurvedibc College and Hospital, Lucknow University, Lucknow, 226003, India.
| | - Ankita Verma
- Ayurveda -Arthritis Treatment and Advanced Research Center (A-ATARC), Department of Kaya Chikitsa, State Ayurvedibc College and Hospital, Lucknow University, Lucknow, 226003, India
| | - Rimjhim Trivedi
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Anuj Shukla
- Ayurveda -Arthritis Treatment and Advanced Research Center (A-ATARC), Department of Kaya Chikitsa, State Ayurvedibc College and Hospital, Lucknow University, Lucknow, 226003, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
6
|
Wang H, Cao Y, Gou Y, Wang H, Liang Z, Wu Q, Tan J, Liu J, Li Z, Cui J, Zhang H, Zhang Z. IGF2BP3 promotes glutamine metabolism of endometriosis by interacting with UCA1 to enhances the mRNA stability of GLS1. Mol Med 2024; 30:64. [PMID: 38760723 PMCID: PMC11102260 DOI: 10.1186/s10020-024-00834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.
Collapse
Affiliation(s)
- Honglin Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Yingying Cao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Yanling Gou
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zongwen Liang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Qiong Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Jiahuan Tan
- Department of Obstetrics and Gynecology, Zhongda Hospital Southeast University (Jiangbei), NanJing, China
| | - Jinming Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Zhi Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Jing Cui
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Huiyan Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Zongfeng Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China.
| |
Collapse
|
7
|
Samare-Najaf M, Razavinasab SA, Samareh A, Jamali N. Omics-based novel strategies in the diagnosis of endometriosis. Crit Rev Clin Lab Sci 2024; 61:205-225. [PMID: 37878077 DOI: 10.1080/10408363.2023.2270736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Endometriosis, an enigmatic and chronic disorder, is considered a debilitating condition despite being benign. Globally, this gynecologic disorder affects up to 10% of females of reproductive age, impacting almost 190 million individuals. A variety of genetic and environmental factors are involved in endometriosis development, hence the pathophysiology and etiology of endometriosis remain unclear. The uncertainty of the etiology of the disease and its complexity along with nonspecific symptoms have led to misdiagnosis or lack of diagnosis of affected people. Biopsy and laparoscopy are referred to as the gold standard for endometriosis diagnosis. However, the invasiveness of the procedure, the unnecessary operation in disease-free women, and the dependence of the reliability of diagnosis on experience in this area are considered the most significant limitations. Therefore, continuous studies have attempted to offer a noninvasive and reliable approach. The recent advances in modern technologies have led to the generation of large-scale biological data sets, known as -omics data, resulting in the proceeding of the -omics century in biomedical sciences. Thereby, the present study critically reviews novel and noninvasive biomarkers that are based on -omics approaches from 2020 onward. The findings reveal that biomarkers identified based on genomics, epigenomics, transcriptomics, proteomics, and metabolomics are potentially able to diagnose endometriosis, predict prognosis, and stage patients, and potentially, in the near future, a multi-panel of these biomarkers will generate clinical benefits.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
8
|
Ishteyaque S, Singh G, Yadav KS, Verma S, Sharma RK, Sen S, Srivastava AK, Mitra K, Lahiri A, Bawankule DU, Rath SK, Kumar D, Mugale MN. Cooperative STAT3-NFkB signaling modulates mitochondrial dysfunction and metabolic profiling in hepatocellular carcinoma. Metabolism 2024; 152:155771. [PMID: 38184165 DOI: 10.1016/j.metabol.2023.155771] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to pose a significant health challenge and is often diagnosed at advanced stages. Metabolic reprogramming is a hallmark of many cancer types, including HCC and it involves alterations in various metabolic or nutrient-sensing pathways within liver cells to facilitate the rapid growth and progression of tumours. However, the role of STAT3-NFκB in metabolic reprogramming is still not clear. APPROACH AND RESULTS Diethylnitrosamine (DEN) administered animals showed decreased body weight and elevated level of serum enzymes. Also, Transmission electron microscopy (TEM) analysis revealed ultrastructural alterations. Increased phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated nuclear factor kappa B (p-NFκβ), dynamin related protein 1 (Drp-1) and alpha-fetoprotein (AFP) expression enhance the carcinogenicity as revealed in immunohistochemistry (IHC). The enzyme-linked immunosorbent assay (ELISA) concentration of IL-6 was found to be elevated in time dependent manner both in blood serum and liver tissue. Moreover, immunoblot analysis showed increased level of p-STAT3, p-NFκβ and IL-6 stimulated the upregulation of mitophagy proteins such as Drp-1, Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Meanwhile, downregulation of Poly [ADP-ribose] polymerase 1 (PARP-1) and cleaved caspase 3 suppresses apoptosis and enhanced expression of AFP supports tumorigenesis. The mRNA level of STAT3 and Drp-1 was also found to be significantly increased. Furthermore, we performed high-field 800 MHz Nuclear Magnetic Resonance (NMR) based tissue and serum metabolomics analysis to identify metabolic signatures associated with the progression of liver cancer. The metabolomics findings revealed aberrant metabolic alterations in liver tissue and serum of 75th and 105th days of intervention groups in comparison to control, 15th and 45th days of intervention groups. Tissue metabolomics analysis revealed the accumulation of succinate in the liver tissue samples, whereas, serum metabolomics analysis revealed significantly decreased circulatory levels of ketone bodies (such as 3-hydroxybutyrate, acetate, acetone, etc.) and membrane metabolites suggesting activated ketolysis in advanced stages of liver cancer. CONCLUSION STAT3-NFκβ signaling axis has a significant role in mitochondrial dysfunction and metabolic alterations in the development of HCC.
Collapse
Affiliation(s)
- Sharmeen Ishteyaque
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gurvinder Singh
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow-226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karan Singh Yadav
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Verma
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar Sharma
- Sophisticated Analytical Instrument Facility and Research Division CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumati Sen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anurag Kumar Srivastava
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility and Research Division CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Lahiri
- Pharmacology Division, CSIR - Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dnyaneshwar U Bawankule
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow-226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Madhav Nilakanth Mugale
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Yadav S, Kumar A, Singh S, Ahmad S, Singh G, Khan AR, Chaurasia RN, Kumar D. NMR based Serum metabolomics revealed metabolic signatures associated with oxidative stress and mitochondrial damage in brain stroke. Metab Brain Dis 2024; 39:283-294. [PMID: 38095788 DOI: 10.1007/s11011-023-01331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024]
Abstract
Brain stroke (BS, also known as a cerebrovascular accident), represents a serious global health crisis. It has been a leading cause of permanent disability and unfortunately, frequent fatalities due to lack of timely medical intervention. While progress has been made in prevention and management, the complexities and consequences of stroke continue to pose significant challenges, especially, its impact on patient's quality of life and independence. During stroke, there is a substantial decrease in oxygen supply to the brain leading to alteration of cellular metabolic pathways, including those involved in mitochondrial-damage, leading to mitochondrial-dysfunction. The present proof-of-the-concept metabolomics study has been performed to gain insights into the metabolic pathways altered following a brain stroke and discover new potential targets for timely interventions to mitigate the effects of cellular and mitochondrial damage in BS. The serum metabolic profiles of 108 BS-patients were measured using 800 MHz NMR spectroscopy and compared with 60 age and sex matched normal control (NC) subjects. Compared to NC, the serum levels of glutamate, TCA-cycle intermediates (such as citrate, succinate, etc.), and membrane metabolites (betaine, choline, etc.) were found to be decreased BS patients, whereas those of methionine, mannose, mannitol, phenylalanine, urea, creatine and organic acids (such as 3-hydroxybutyrate and acetone) were found to be elevated in BS patients. These metabolic changes hinted towards hypoxia mediated mitochondrial dysfunction in BS-patients. Further, the area under receiver operating characteristic curve (ROC) values for five metabolic features (methionine, mannitol, phenylalanine, mannose and urea) found to be more than 0.9 suggesting their high sensitivity and specificity for differentiating BS from NC subjects.
Collapse
Affiliation(s)
- Sachin Yadav
- Department of Chemistry, Integral University, Lucknow, 226026, India
| | - Abhai Kumar
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| | - Smita Singh
- Department of Zoology, Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Shahnawaz Ahmad
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gurvinder Singh
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
10
|
Srivastava J, Trivedi R, Saxena P, Yadav S, Gupta R, Nityanand S, Kumar D, Chaturvedi CP. Bone marrow plasma metabonomics of idiopathic acquired aplastic anemia patients using 1H nuclear magnetic resonance spectroscopy. Metabolomics 2023; 19:94. [PMID: 37975930 DOI: 10.1007/s11306-023-02056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Idiopathic acquired aplastic anemia (AA) is a bone marrow failure disorder where aberrant T-cell functions lead to depletion of hematopoietic stem and progenitor cells in the bone marrow (BM) microenvironment. T-cells undergo metabolic rewiring, which regulates their proliferation and differentiation. Therefore, studying metabolic variation in AA patients may aid us with a better understanding of the T-cell regulatory pathways governed by metabolites and their pathological engagement in the disease. OBJECTIVE To identify the differential metabolites in BM plasma of AA patients, AA follow-up (AAF) in comparison to normal controls (NC) and to identify potential disease biomarker(s). METHODS The study used 1D 1H NMR Carr-Purcell-Meiboom-Gill (CPMG) spectra to identify the metabolites present in the BM plasma samples of AA (n = 40), AAF (n = 16), and NC (n = 20). Metabolic differences between the groups and predictive biomarkers were identified by using multivariate analysis and receiver operating characteristic (ROC) module of Metaboanalyst V5.0 tool, respectively. RESULTS The AA and AAF samples were well discriminated from NC group as per Principal Component analysis (PCA). Further, we found significant alteration in the levels of 17 metabolites in AA involved in amino-acid (Leucine, serine, threonine, phenylalanine, lysine, histidine, valine, tyrosine, and proline), carbohydrate (Glucose, lactate and mannose), fatty acid (Acetate, glycerol myo-inositol and citrate), and purine metabolism (hypoxanthine) in comparison to NC. Additionally, biomarker analysis predicted Hypoxanthine and Acetate can be used as a potential biomarker. CONCLUSION The study highlights the significant metabolic alterations in the BM plasma of AA patients which may have implication in the disease pathobiology.
Collapse
Affiliation(s)
- Jyotika Srivastava
- Department of Hematology, Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Rimjhim Trivedi
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pragati Saxena
- Department of Hematology, Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sanjeev Yadav
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Ruchi Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Soniya Nityanand
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Chandra P Chaturvedi
- Department of Hematology, Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
11
|
Singh N, Pandey AK, Pal RR, Parashar P, Singh P, Mishra N, Kumar D, Raj R, Singh S, Saraf SA. Assessment of Anti-Arthritic Activity of Lipid Matrix Encased Berberine in Rheumatic Animal Model. J Microencapsul 2023; 40:263-278. [PMID: 36989347 DOI: 10.1080/02652048.2023.2194414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
AIM The purpose of this study was to evaluate the drug delivery and therapeutic potential of berberine (Br) loaded nanoformulation in rheumatoid arthritis (RA)-induced animal model. METHOD The Br-loaded NLCs (nanostructured lipid carriers) were prepared employing melt-emulsification process, and optimized through box-behnken design. The prepared NLCs were assessed for in-vitro and in-vivo evaluations. RESULT The optimized NLCs exhibited a mean diameter of 180.2 ± 0.31nm with 88.32 ± 2.43% entrapment efficiency. An enhanced anti-arthritic activity with reduced arthritic scores to 0.66 ± 0.51, reduction in ankle diameter to 5.80 ± 0.27mm, decline in paw withdrawal timing, and improvements in walking behavior were observed in the Br-NLCs treated group. The radiographic images revealed a reduction in bone and cartilage deformation. CONCLUSION The Br-NLCs showed promising results in the management of RA disease, can be developed as an efficient delivery system at commercial levels, and may be explored for clinical application after suitable experiments in the future.
Collapse
Affiliation(s)
- Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Amit Kumar Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Poonam Parashar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Uttar Pradesh, Raebareli Road, Lucknow, 226014, India
| | - Ritu Raj
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Uttar Pradesh, Raebareli Road, Lucknow, 226014, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| |
Collapse
|
12
|
Shekher A, Puneet, Awasthee N, Kumar U, Raj R, Kumar D, Gupta SC. Association of altered metabolic profiles and long non-coding RNAs expression with disease severity in breast cancer patients: analysis by 1H NMR spectroscopy and RT-q-PCR. Metabolomics 2023; 19:8. [PMID: 36710275 DOI: 10.1007/s11306-023-01972-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Globally, one of the major causes of cancer related deaths in women is breast cancer. Although metabolic pattern is altered in cancer patients, robust metabolic biomarkers with a potential to improve the screening and disease monitoring are lacking. A complete metabolome profiling of breast cancer patients may lead to the identification of diagnostic/prognostic markers and potential targets. OBJECTIVES The aim of this study was to analyze the metabolic profile in the serum from 43 breast cancer patients and 13 healthy individuals. MATERIALS & METHODS We used 1H NMR spectroscopy for the identification and quantification of metabolites. q-RT-PCR was used to examine the relative expression of lncRNAs. RESULTS Metabolites such as amino acids, lipids, membrane metabolites, lipoproteins, and energy metabolites were observed in the serum from both patients and healthy individuals. Using unsupervised PCA, supervised PLS-DA, supervised OPLS-DA, and random forest classification, we observed that more than 25 metabolites were altered in the breast cancer patients. Metabolites with AUC value > 0.9 were selected for further analysis that revealed significant elevation of lactate, LPR and glycerol, while the level of glucose, succinate, and isobutyrate was reduced in breast cancer patients in comparison to healthy control. The level of these metabolites (except LPR) was altered in advanced-stage breast cancer patients in comparison to early-stage breast cancer patients. The altered metabolites were also associated with over 25 signaling pathways related to metabolism. Further, lncRNAs such as H19, MEG3 and GAS5 were dysregulated in the breast tumor tissue in comparison to normal adjacent tissue. CONCLUSION The study provides insights into metabolic alteration in breast cancer patients. It also provides an avenue to examine the association of lncRNAs with metabolic patterns in patients.
Collapse
Affiliation(s)
- Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Puneet
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Umesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS, Lucknow, Uttar Pradesh, 226 014, India
| | - Ritu Raj
- Centre of Biomedical Research (CBMR), SGPGIMS, Lucknow, Uttar Pradesh, 226 014, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS, Lucknow, Uttar Pradesh, 226 014, India.
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India.
- Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, 781101, India.
| |
Collapse
|
13
|
Kartsova LA, Bessonova EA, Deev VA, Kolobova EA. Current Role of Modern Chromatography with Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy in the Investigation of Biomarkers of Endometriosis. Crit Rev Anal Chem 2023; 54:2110-2133. [PMID: 36625278 DOI: 10.1080/10408347.2022.2156770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endometriosis has a wide range of clinical manifestations, and the disease course is unpredictable, making the diagnosis a challenging task. Despite significant advances in the pathophysiology of endometriosis and various proposed theories, the exact etiology is not fully understood and is still unknown. The most commonly used biomarker of endometriosis is CA-125, however, it is nonspecific and is applied for cancers diagnosis. Therefore, the development of reliable noninvasive diagnostic tests for the early diagnosis of endometriosis remains one of the top priorities. Omics technologies are very promising approaches for constructing diagnostic models and biomarker discovery. Their use can greatly facilitate the study of such a complex disease as endometriosis. Nowadays, powerful analytical platforms commonly used in omics, such as gas and liquid chromatography with mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, have proven to be a promising tools for biomarker discovery. The aim of this review is to summarize the various features of the analytical approaches, practical challenges and features of gas and liquid chromatography with MS and NMR spectroscopy (including sample processing protocols, technological advancements, and methodology) used for profiling of metabolites, lipids, peptides and proteins in physiological fluids and tissues from patients with endometriosis. In addition, this report devotes special attention to the issue of how comprehensive analyses of these profiles can effectively contribute to the study of endometriosis. The search query included reports published between 2012 and 2022 years in PubMed, Web-of-Science, SCOPUS, Science Direct.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Alekseevna Kolobova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
- The Federal State Institute of Public Health 'The Nikiforov Russian Center of Emergency and Radiation Medicine', The Ministry of Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters, St. Petersburg, Russia
| |
Collapse
|