1
|
Prajapati SK, Jain A, Bajpai M. Lipid-based nanoformulations in onychomycosis therapy: addressing challenges of current therapies and advancing treatment. RSC Adv 2025; 15:7799-7825. [PMID: 40070389 PMCID: PMC11895809 DOI: 10.1039/d5ra00387c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Onychomycosis significantly impacts approximately 20% of the global population. The physical barriers of the nail structure make fungal infections a persistent therapeutic challenge. Traditional approaches, including topical and oral antifungal agents, have limitations such as toxicities, low nail permeability, adverse effects, and high recurrence rates. Consequently, emerging lipid-based delivery systems have gained interest because of their potential to address these drawbacks. Nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), liposomes, and transferosomes are innovative formulations that offer enhanced drug solubility, sustained release, and targeted delivery to the nail matrix. These lipid-mediated approaches have shown promise in overcoming the hurdles associated with conventional therapies, thereby improving treatment outcomes, patient compliance, and the overall quality of life. A comprehensive review focusing on the potential of lipid-based drug delivery systems in treating onychomycosis is lacking in the existing literature. This review explores various aspects of the clinical presentation of onychomycosis, available treatments, challenges associated with treatment, formulation science related to lipid-based vehicles and their applications, highlighted by the promising aspects of these novel formulations, and provides insights into clinical developments. In addition, the regulatory perspective is critical to such development, and approval is discussed, particularly in managing regulatory compliance complexities to ensure successful implementation. The holistic approach provides a comprehensive basis for determining lipid-based drug delivery systems' state-of-the-art and future scope.
Collapse
Affiliation(s)
| | - Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani Pilani Campus Pilani India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University Mathura India
| |
Collapse
|
2
|
Vasa DM, Wang SW, Dunn MF, Long E, Luthra SA. Molecular-properties based formulation guidance tree for amorphous and supersaturable mesoporous silica preparations of poorly soluble compounds. J Pharm Sci 2025; 114:554-565. [PMID: 39481476 DOI: 10.1016/j.xphs.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
A huge majority of new chemical entities (NCEs) advancing through the drug discovery pipeline often have poor aqueous solubility. This requires formulation scientists to search for solubility enhancement strategies, within the constraints of time and material. To address these challenges, a strategic platform formulation is often required for a rapid compound screening to enable early exploratory PK and toxicology studies. Through this work, we present an option of a material-sparing, high yielding and solubility-enabling amorphous API and HPMCAS-L co-loaded mesoporous silica-based formulation. The usability of this platform formation strategy was assessed for a physico-chemically diverse set of eleven compounds. The formulation approach was successful in stabilizing the model compounds mesoporous silica. Additionally, through the presence of HPMCAS-L, the precipitation risk in supersaturable aqueous environment was significantly reduced. Finally, this manuscript provides fundamental, computational and experimental molecular-properties based formulation guidance tree to a priori gauge the (1) possibility of generating solid-state stable amorphous formulations and (2) sustaining in vitro supersaturation in extreme non-sink dissolution conditions. This unique and conceptual formulation guidance tree is believed to be extremely beneficial to drug discovery formulators to triage NCEs and streamline solubility-enabling formulation efforts.
Collapse
Affiliation(s)
- Dipy M Vasa
- Drug Product Design, Pfizer, Inc., Cambridge, MA, United States
| | - Shih-Wen Wang
- Drug Product Design, Pfizer, Inc., Cambridge, MA, United States
| | - Matthew F Dunn
- Drug Product Design, Pfizer Worldwide research and development, Groton, CT, United States
| | - Erica Long
- Drug Product Design, Pfizer Worldwide research and development, Groton, CT, United States
| | - Suman A Luthra
- Drug Product Design, Pfizer, Inc., Cambridge, MA, United States
| |
Collapse
|
3
|
Marinescu SC(N, Apetroaei MM, Nedea MI(I, Arsene AL, Velescu BȘ, Hîncu S, Stancu E, Pop AL, Drăgănescu D, Udeanu DI. Dietary Influence on Drug Efficacy: A Comprehensive Review of Ketogenic Diet-Pharmacotherapy Interactions. Nutrients 2024; 16:1213. [PMID: 38674903 PMCID: PMC11054576 DOI: 10.3390/nu16081213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
It is widely acknowledged that the ketogenic diet (KD) has positive physiological effects as well as therapeutic benefits, particularly in the treatment of chronic diseases. Maintaining nutritional ketosis is of utmost importance in the KD, as it provides numerous health advantages such as an enhanced lipid profile, heightened insulin sensitivity, decreased blood glucose levels, and the modulation of diverse neurotransmitters. Nevertheless, the integration of the KD with pharmacotherapeutic regimens necessitates careful consideration. Due to changes in their absorption, distribution, metabolism, or elimination, the KD can impact the pharmacokinetics of various medications, including anti-diabetic, anti-epileptic, and cardiovascular drugs. Furthermore, the KD, which is characterised by the intake of meals rich in fats, has the potential to impact the pharmacokinetics of specific medications with high lipophilicity, hence enhancing their absorption and bioavailability. However, the pharmacodynamic aspects of the KD, in conjunction with various pharmaceutical interventions, can provide either advantageous or detrimental synergistic outcomes. Therefore, it is important to consider the pharmacokinetic and pharmacodynamic interactions that may arise between the KD and various drugs. This assessment is essential not only for ensuring patients' compliance with treatment but also for optimising the overall therapeutic outcome, particularly by mitigating adverse reactions. This highlights the significance and necessity of tailoring pharmacological and dietetic therapies in order to enhance the effectiveness and safety of this comprehensive approach to managing chronic diseases.
Collapse
Affiliation(s)
- Simona Cristina (Nicolescu) Marinescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Amethyst Radiotherapy Center, 42, Drumul Odăi, 075100 Otopeni, Romania
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Marius Nasta Institute of Pneumophthiology, 90, Viilor Street, 050159 Bucharest, Romania
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Sorina Hîncu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Fundeni Clinical Institute, 258, Fundeni Street, 022328 Bucharest, Romania
| | - Emilia Stancu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Anca Lucia Pop
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Doina Drăgănescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Marius Nasta Institute of Pneumophthiology, 90, Viilor Street, 050159 Bucharest, Romania
| |
Collapse
|
4
|
Saldanha L, Vale N. The First Physiologically Based Pharmacokinetic (PBPK) Model for an Oral Vaccine Using Alpha-Tocopherol as an Adjuvant. Pharmaceutics 2023; 15:2313. [PMID: 37765281 PMCID: PMC10535515 DOI: 10.3390/pharmaceutics15092313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Oral vaccines represent many advantages compared to standard vaccines. They hold a simple method of administration and manufacturing process. In addition to these, the way they can induce immune responses makes these a promising technology for the pharmaceutical industry and represents a new hope to society. Physiologically based pharmacokinetics (PBPK) has been used in support of drug development to predict the pharmacokinetics of the compound, considering the patient's physiology. Despite PBPK studies now being widely used, there are very few models in the literature that support vaccine development. Therefore, the goal of this article was to determine how PBPK could support vaccine development. The first PBPK model for an oral vaccine using alpha-tocopherol as a vaccine adjuvant was built. LogP is the parameter that influences the delivery of alpha-tocopherol into the tissues more. Having a high LogP means it accumulates in adipose tissue and is slowly metabolized. The ideal formulation to include alpha-tocopherol in an oral vaccine would incorporate nanoparticles in a capsule, and the dosage of the compound would be 150 mg in a volume of 200 mL. This article aims to determine if alpha-tocopherol, as a well-known adjuvant for intramuscular injection vaccines, could be used as an adjuvant to oral vaccines. This model was built considering the conditions and requirements needed for designing an oral vaccine. This implies making sure the antigen and adjuvants reach the main target by overcoming the challenges of the gastrointestinal tract. The main parameters that would need to be included in a formulation using alpha-tocopherol as an adjuvant were determined.
Collapse
Affiliation(s)
- Leonor Saldanha
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
5
|
Ardad RM, Manjappa AS, Dhawale SC, Kumbhar PS, Pore YV. Concurrent oral delivery of non-oncology drugs through solid self-emulsifying system for repurposing in hepatocellular carcinoma. Drug Dev Ind Pharm 2023:1-21. [PMID: 37216496 DOI: 10.1080/03639045.2023.2216785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Present study aimed to identify a safe and effective non-oncology drug cocktail as an alternative to toxic chemotherapeutics for hepatocellular carcinoma treatment. The assessment of cytotoxicity of cocktail (as co-adjuvant) in combination with chemotherapeutic docetaxel (DTX) is also aimed. Further, we aimed to develop an oral solid self-emulsifying drug delivery system (S-SEDDS) for the simultaneous delivery of identified drugs. SIGNIFICANCE The identified non-oncology drug cocktail could overcome the shortage of anticancer therapeutics and help to reduce cancer-related mortality. Moreover, the developed S-SEDDS could be an ideal system for concurrent oral delivery of non-oncology drug combinations. METHODS The non-oncology drugs (alone and in combinations) were screened in vitro for anticancer effect (against HepG2 cells) using (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide; MTT) dye assay, and cell cycle arresting and apoptotic behaviors using the fluorescence-activated cell sorting (FACS) technique. The S-SEDDS is composed of drugs such as Ketoconazole (KCZ), Disulfiram (DSR), Tadalafil (TLF), and excipients like span-80, tween-80, soybean oil, Leciva S-95, Poloxamer F108 (PF-108), and Neusilin® US2 (adsorbent carrier) was developed and characterized. RESULTS The cocktail composed of KCZ, DSR, and TLF has showed substantial cytotoxicity (at the lowest concentration of 3.3 picomoles), HepG2 cell arrest at G0/G1 and S phases, and substantial cell death via apoptosis. The Docetaxel (DTX) inclusion into this cocktail has further resulted in increased cytotoxicity, cell arrest at the G2/M phase, and cell necrosis. The optimized blank liquid SEDDS that remains transparent without phase separation for more than 6 months is used for the preparation of drug-loaded liquid SEDDS (DL-SEDDS). The optimized DL-SEDDS with low viscosity, good dispersibility, considerable drug retention upon dilution, and smaller particle size is further converted into drug-loaded solid SEDDS (DS-SEDDS). The final DS-SEDDS demonstrated acceptable flowability and compression characteristics, significant drug retention (more than 93%), particle size in nano range (less than 500 nm) and nearly spherical morphology following dilutions. The DS-SEDDS showed substantially increased cytotoxicity and Caco-2 cell permeability than plain drugs. Furthermore, DS-SEDDS containing only non-oncology drugs caused lower in vivo toxicity (only 6% body weight loss) than DS-SEDDS containing non-oncology drugs with DTX (about 10% weight loss). CONCLUSION The current study revealed a non-oncology drug combination effective against hepatocellular carcinoma. Further, it is concluded that the developed S-SEDDS containing non-oncology drug combination alone and in combination with DTX could be a promising alternative to toxic chemotherapeutics for the effective oral treatment of hepatic cancer.
Collapse
Affiliation(s)
- Rameshwar M Ardad
- Department of Pharmacology, School of Pharmacy, Swami Ramanand Marathwada University, Nanded, Maharashtra, India
- Department of Quality Assurance, Dr. Shivajirao Kadam College of Pharmacy, Kasbe Digraj, Sangli, India
| | - Arehalli S Manjappa
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Tal- Panhala, Dist- Kolhapur, 416114 (MS)
| | - Shashikant C Dhawale
- Department of Pharmacology, School of Pharmacy, Swami Ramanand Marathwada University, Nanded, Maharashtra, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Department of Pharmaceutics, Warananagar, Taluka Panhala, District Kolhapur, Maharashtra, India
| | - Yogesh V Pore
- Department of Pharmaceutical Chemistry, Government College of Pharmacy,Ratnagiri, Maharshtra, India
| |
Collapse
|
6
|
Aljohani AA, Alanazi MA, Munahhi LA, Hamroon JD, Mortagi Y, Qushawy M, Soliman GM. Binary ethosomes for the enhanced topical delivery and antifungal efficacy of ketoconazole. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|