1
|
Adamczyk PM, Shaw A, Morella IM, More L. Neurobiology, molecular pathways, and environmental influences in antisocial traits and personality disorders. Neuropharmacology 2025; 269:110322. [PMID: 39864585 DOI: 10.1016/j.neuropharm.2025.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30%-60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors. Environmental factors, including childhood trauma and chronic stress, interact with genetic predispositions to induce epigenetic modifications like DNA methylation and histone modifications, contributing to PD development. Neurobiological research has identified structural and functional abnormalities in brain regions related to emotional regulation and social cognition, such as the amygdala, prefrontal cortex, and limbic system. These abnormalities are linked to impaired emotion processing and interpersonal functioning in PDs. This review focuses on how environmental factors shape maladaptive behaviours and endophenotypes central to many PDs. It explores the interaction between the Ras-ERK, p38, and mTOR molecular pathways in response to environmental stimuli, and examines the role of oxidative stress and mitochondrial metabolism in these processes. Also reviewed are various types of PDs and existing animal models that replicate key endophenotypes, highlighting changes in neurotransmitters and neurohormones. Identifying molecular biomarkers can lead to the development of "enviromimetic" drugs, which mimic environmental influences to activate molecular pathways, facilitating targeted, personalized treatments based on the molecular profiles of individuals with PDs. Ultimately, understanding the molecular mechanisms of PDs promises to enhance diagnostic accuracy, prognosis, and therapeutic outcomes for affected individuals.
Collapse
Affiliation(s)
- Patryk M Adamczyk
- School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston, UK
| | - Andrew Shaw
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| | - Ilaria M Morella
- University of Pavia, Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia, Italy; Cardiff University, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, UK.
| | - Lorenzo More
- School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston, UK.
| |
Collapse
|
2
|
Zoatier B, Gizem Yildiztekin K, Abdullah Alagoz M, Hepokur C, Burmaoglu S, Algul O. Development of Potent Type V MAPK Inhibitors: Design, Synthesis, and Biological Evaluation of Benzothiazole Derivatives Targeting p38α MAPK in Breast Cancer Cells. Arch Pharm (Weinheim) 2025; 358:e2500011. [PMID: 40194955 PMCID: PMC11975549 DOI: 10.1002/ardp.202500011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025]
Abstract
Type V MAPK inhibitors are distinguished by their capacity to target both the ATP binding site and a specific allosteric site on the enzyme. The present work utilized in silico analysis with Maestro 13.8.135 (Schrodinger) software in conjunction with experimental investigations to enhance the antiproliferative efficacy and forecast the likely mechanism of action of benzothiazole derivatives. Approximately 28 compounds were developed, produced, and assessed for their antiproliferative properties against two breast cancer cell lines: ER+ (MCF7) and ER- (MDA-MB-231), in addition to one normal mouse fibroblast cell line (L929). Their antiproliferative activities were evaluated via the MTT test, with doxorubicin and cisplatin serving as reference drugs for comparison. Consequently, the compounds with the greatest activity against the MCF7 cell line were chosen, and their inhibitory effects on the p38α MAPK enzyme were examined. The molecular docking studies of compounds 15 and 19 demonstrated significant binding affinities for p38α MAPK. Molecular dynamics simulations conducted over 100 ns revealed that compounds 15 and 19 exhibit stability inside both the ATP-binding domain and the lipid domain of p38α MAPK. The research focused on creating effective Type V MAPK inhibitors demonstrate that compounds 15 and 19 possess considerable ability to inhibit p38α MAPK, hence establishing them as promising anticancer agents.
Collapse
Affiliation(s)
- Bayan Zoatier
- Department of Pharmaceutical Chemistry, Faculty of PharmacyMersin UniversityMersinTürkiye
| | - K. Gizem Yildiztekin
- Department of Toxicology, Faculty of PharmacyErzincan Binali Yıldırım UniversityErzincanTürkiye
| | - M. Abdullah Alagoz
- Department of Pharmaceutical Chemistry, Faculty of PharmacyInonu UniversityMalatyaTürkiye
| | - Ceylan Hepokur
- Department of Biochemistry, Faculty of PharmacySivas Cumhuriyet UniversitySivasTürkiye
| | - Serdar Burmaoglu
- Department of Chemistry, Faculty of ScienceAtatürk UniversityErzurumTürkiye
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of PharmacyMersin UniversityMersinTürkiye
- Department of Pharmaceutical Chemistry, Faculty of PharmacyErzincan Binali Yıldırım UniversityErzincanTürkiye
| |
Collapse
|
3
|
Moussa Z, Ramanathan M, Alharmoozi SM, Alkaabi SAS, Al Aryani SHM, Ahmed SA, Al-Masri HT. Recent highlights in the synthesis and biological significance of pyrazole derivatives. Heliyon 2024; 10:e38894. [PMID: 39492900 PMCID: PMC11531639 DOI: 10.1016/j.heliyon.2024.e38894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Aza-heterocyclic scaffolds are privileged cores in the composition of their potential therapeutic profiles and versatile synthetic intermediates. Pyrazole is one of the frequently studied compounds of "azole" family and consists of nitrogen in a 1,2 linking sequence. These motifs possess a wide-spectrum of applications in the field of pharmaceuticals, agrochemicals, polymer chemistry, cosmetics, food industries and more. In addition, functionalized pyrazole derivatives are frequently used as ligands in coordination chemistry and metal-catalysed reactions. As exemplified by numerous recent reports, pyrazoles are highly promising pharmacophores with excellent therapeutic applications. Owing to their aromaticity, the ring structures have many reactive positions, where electrophilic, nucleophilic, alkylation and oxidative reactions might occur. The structural adroitness and diversity of pyrazole cores further emanated numerous fused bicyclic skeletons with various biological applications. In this review, we highlight the recent synthetic methods developed for the preparation of functionalized pyrazole derivatives (From 2017 to present). In addition, we have also covered the notable biological activities (anti-cancer, anti-inflammatory, anti-bacterial and anti-viral) of this ubiquitous core. Herein, we emphasised the synthesis of pyrazoles from variety of precursors such as, alkynes, α,β-unsaturated carbonyl compounds, diazo reagents, nitrile imines, diazonium salts, 1,3-dicarbonyl compounds and etc. Moreover, the recent synthetic methodologies focusing on the preparation of pyrazolines and pyrazolones and variously fused-pyrazoles are also included. Authors expect this review could significantly help the researchers in finding elegant novel tools to synthesize pyrazole skeletons and expand their biological evaluation.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Mani Ramanathan
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shaikha Mohammad Alharmoozi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shahad Ali Saeed Alkaabi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | | | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Harbi Tomah Al-Masri
- Department of Chemistry, Faculty of Sciences, Al al-Bayt University, P. O. Box 130040, Mafraq, 25113, Jordan
| |
Collapse
|
4
|
Yadav AR, Katariya AP, Kanagare AB, Patil PDJ, Tagad CK, Dake SA, Nagwade PA, Deshmukh SU. Review on advancements of pyranopyrazole: synthetic routes and their medicinal applications. Mol Divers 2024; 28:3557-3604. [PMID: 38236443 DOI: 10.1007/s11030-023-10757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/22/2023] [Indexed: 01/19/2024]
Abstract
Pyranopyrazoles are among the most distinguished, biologically potent, and exciting scaffolds in medicinal chemistry and drug discovery. Synthesis and design of pyranopyrazoles using functional modifications via multicomponent reactions (MCRs) are thoroughly found in synthetic protocols by forming new C-C, C-N, and C-O bonds. This review aims to focus on the biological importance of pyranopyrazoles as well as on a diverse synthetic approach for their synthesis using various catalytic systems such as acid-catalyzed, base-catalyzed, ionic liquids and green media-catalyzed, nano-particle-catalyzed, metal oxide-supported catalysts, and silica-supported catalysts. In this review, we have summarized data on the advancements in synthesizing pyranopyrazole from the last two decades to the mid-2023 and research papers describing the importance of these scaffolds. This review will be significant for synthetic organic chemists and researchers working in organic chemistry.
Collapse
Affiliation(s)
- Ashok R Yadav
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India
| | - Ashishkumar P Katariya
- Department of Chemistry, SAJVPM'S Smt. S. K. Gandhi Arts, Amolak Science & P. H. Gandhi, Commerce College, Kada, Beed, Maharashtra, 414202, India
| | - Anant B Kanagare
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India.
| | - Pramod D Jawale Patil
- Department of Chemistry, Balbhim Arts, Science and Commerce College, Beed, Maharashtra, 431122, India
| | - Chandrakant K Tagad
- Department of Biochemistry, S.B.E.S. College of Science, Aurangabad, Maharashtra, 431001, India
| | - Satish A Dake
- Department of Chemistry, Sunderrao Solanke Mahavidyalaya, Majalgaon, Maharashtra, 431131, India
| | - Pratik A Nagwade
- Department of Chemistry, Shri Anand College, Pathardi, Ahmednagar, Maharashtra, 414102, India
| | - Satish U Deshmukh
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India.
| |
Collapse
|
5
|
Borzooei M, Norouzi M, Mohammadi M. Construction of a Dual-Functionalized Acid-Base Nanocatalyst via HEPES Buffer Functionalized on Fe 3O 4 as a Reusable Catalyst for Annulation Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13397-13411. [PMID: 38900039 DOI: 10.1021/acs.langmuir.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Herein, we present a highly efficient dual-functionalized acid-base nanocatalyst, denoted as Fe3O4@GLYMO-HEPES, featuring sulfuric acid and tertiary amines as its dual functional components. This catalyst is synthesized through the immobilization of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as the source of these functionalities onto magnetite (Fe3O4) using 3-glycidoxypropyltriethoxysilane (GLYMO) as a linker. Characterization studies confirm the integrity of the Fe3O4 core, with the GLYMO-HEPES coating exhibiting no phase changes. Furthermore, Fe3O4@GLYMO-HEPES nanoparticles demonstrate a uniform size distribution without aggregation. Notably, the catalyst exhibits remarkable stability up to 200 °C and possesses a saturation magnetization value of 31.5 emu/g, facilitating easy recovery via magnetic separation. These findings underscore the potential of Fe3O4@GLYMO-HEPES as a versatile and recyclable nanocatalyst for various applications. Its catalytic ability was evaluated in the synthesis of various pyrano[2,3-c]pyrazoles and 2-amino-3-cyano-4H-chromenes through a tandem Knorr-Knoevenagel-Michael-Thorpe-Ziegler-type heterocyclization mechanism, using different aldehydes. A wide range of fused heterocycles was synthesized having good to excellent yields. The process is cost-effective, safe, sustainable, and scalable, and the catalyst can be reused up to five times. The prepared catalyst was found to be highly stable and heterogeneous and showed good recyclability.
Collapse
Affiliation(s)
- Maryam Borzooei
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam 69315516, Iran
| | - Masoomeh Norouzi
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam 69315516, Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam 69315516, Iran
| |
Collapse
|
6
|
Tahseen Alhayo R, Jassim GS, Naji HA, Shather AH, Naser IH, Khaleel LA, Almashhadani HA. An Fe 3O 4 supported O-phenylenediamine based tetraaza Schiff base-Cu(ii) complex as a novel nanomagnetic catalytic system for synthesis of pyrano[2,3- c]pyrazoles. NANOSCALE ADVANCES 2023; 5:7018-7030. [PMID: 38059019 PMCID: PMC10696951 DOI: 10.1039/d3na00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
In this research, we present a post-synthetic method for synthesizing a novel nanomagnetic Cu(II) Schiff base complex and investigate its efficiency in catalytic organic conversion reactions. Various spectroscopic analyses were employed to characterize the physiochemical characteristics of the resulting nanocomposite. The experimental results successfully demonstrate the catalytic application of the prepared Cu-complex in the preparation of pyrano[2,3-c]pyrazole heterocycles. This synthesis involved a one-pot three-component condensation reaction, wherein hydrazine hydrate, ethyl acetoacetate, malononitrile, and aromatic aldehydes were combined under reflux conditions using water as the solvent. Notably, the heterogenized complex exhibited exceptional catalytic performance, achieving remarkable conversion rates and selectivity, all accomplished using only 12 mg of the catalyst. Furthermore, thorough stability assessments of this catalyst were conducted through reusability and hot filtration tests, which confirmed its non-leaching properties and demonstrated excellent results over the course of five consecutive runs.
Collapse
Affiliation(s)
| | - Ghufran Sh Jassim
- Department of Chemistry, College of Science, University of Anbar Anbar Iraq
| | | | - A H Shather
- Department of Computer Engineering Technology Al Kitab University,Altun Kopru Kirkuk 00964 Iraq
| | - Israa Habeeb Naser
- Medical Laboratories Techniques Department / AL-Mustaqbal University College 51001 Hillah Babil Iraq
| | - Luay Ali Khaleel
- Collage of Dentistry, National University of Science and Technology Dhi Qar Iraq
| | | |
Collapse
|
7
|
Nguyen HT, Nguyen PN, Van Le T, Nguyen TH, Nguyen LD, Tran PH. Synthesis of benzo[ a]carbazole derivatives via intramolecular cyclization using Brønsted acidic carbonaceous material as the catalyst. RSC Adv 2023; 13:28623-28631. [PMID: 37780732 PMCID: PMC10540035 DOI: 10.1039/d3ra04943d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
In this work, a new procedure for the synthesis of benzo[a]carbazole from 1,3-diketones, primary amines, phenylglyoxal monohydrate, and malononitrile employing a solid acidic catalyst has been developed. The multicomponent reaction provided 3-cyanoacetamide pyrrole as an intermediate and then the formation of benzo[a]carbazole via intramolecular ring closure. The reaction was carried out for 2 h at 240 °C, resulting in the desired product with 73% yield. Acidic sites on the solid acid catalyst, made from rice husk-derived amorphous carbon with a sulfonic acid core (AC-SO3H), provided the best activity. Acidic sites on the surface of the catalyst, including carboxylic, phenolic, and sulfonic acids, were 4.606 mmol g-1 of the total acidity. AC-SO3H demonstrated low cost, low toxicity, porosity, stability, and flexibility of tuning and reusability.
Collapse
Affiliation(s)
- Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Phat Ngoc Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Tan Van Le
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Trinh Hao Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Linh Dieu Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
8
|
Urbonavičius A, Krikštolaitytė S, Bieliauskas A, Martynaitis V, Solovjova J, Žukauskaitė A, Arbačiauskienė E, Šačkus A. Synthesis and Characterization of New Pyrano[2,3- c]pyrazole Derivatives as 3-Hydroxyflavone Analogues. Molecules 2023; 28:6599. [PMID: 37764375 PMCID: PMC10537540 DOI: 10.3390/molecules28186599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, an efficient synthetic route from pyrazole-chalcones to novel 6-aryl-5-hydroxy-2-phenylpyrano[2,3-c]pyrazol-4(2H)-ones as 3-hydroxyflavone analogues is described. The methylation of 5-hydroxy-2,6-phenylpyrano[2,3-c]pyrazol-4(2H)-one with methyl iodide in the presence of a base yielded a compound containing a 5-methoxy group, while the analogous reaction of 5-hydroxy-2-phenyl-6-(pyridin-4-yl)pyrano[2,3-c]pyrazol-4(2H)-one led to the zwitterionic 6-(N-methylpyridinium)pyrano[2,3-c]pyrazol derivative. The treatment of 5-hydroxy-2,6-phenylpyrano[2,3-c]pyrazol-4(2H)-one with triflic anhydride afforded a 5-trifloylsubstituted compound, which was further used in carbon-carbon bond forming Pd-catalyzed coupling reactions to yield 5-(hetero)aryl- and 5-carbo-functionalized pyrano[2,3-c]pyrazoles. The excited-state intramolecular proton transfer (ESIPT) reaction of 5-hydroxypyrano[2,3-c]pyrazoles from the 5-hydroxy moiety to the carbonyl group in polar protic, polar aprotic, and nonpolar solvents was observed, resulting in well-resolved two-band fluorescence. The structures of the novel heterocyclic compounds were confirmed by 1H-, 13C-, 15N-, and 19F-NMR spectroscopy, HRMS, and single-crystal X-ray diffraction data.
Collapse
Affiliation(s)
- Arminas Urbonavičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania;
| | - Sonata Krikštolaitytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania;
| | - Vytas Martynaitis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
| | - Joana Solovjova
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
| | - Asta Žukauskaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
- Department of Chemical Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (A.U.); (S.K.); (V.M.); (J.S.); (A.Ž.)
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania;
| |
Collapse
|
9
|
Nguyen HT, Truong VA, Tran PH. Preparation of polysubstituted imidazoles using AC-SO 3H/[Urea] 7[ZnCl 2] 2 as an efficient catalyst system: a novel method, and α-glucosidase inhibitor activity. RSC Adv 2023; 13:12455-12463. [PMID: 37091625 PMCID: PMC10117287 DOI: 10.1039/d3ra00755c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Deep eutectic solvents (DESs) act as both an organic solvent and a useful catalyst for organic synthesis reactions, especially the synthesis of heterocyclic compounds containing the element nitrogen. DESs exhibit many important properties namely large liquid fields, biodegradability, outstanding thermal stability, and moderate vapor pressure. Amorphous carbon-bearing sulfonic acid groups (AC-SO3H) are one of the new-generation solid acids showing strong acid activity. Based on the simultaneous presence of acidic functional groups such as carboxylic acid, phenolic, and sulfonic acid groups, they exhibit many important activities namely strong Brønsted acid, high surface area, high stability, reusability, and recyclability. In this study, AC-SO3H was made from rice husk via the carbonization and sulfonation processes, and the surface properties and structure were examined using contemporary methods such as FT-IR, P-XRD, TGA, SEM, and EDS. And, [Urea]7[ZnCl2]2 was synthesized from urea and ZnCl2 with a mole ratio of 7 : 2; the structure is defined using FT-IR and TGA. By combining AC-SO3H and [Urea]7[ZnCl2]2 we aim to form an effective catalyst/solvent system for the preparation of polysubstituted imidazole derivatives through the multi-component cyclization reaction from nitrobenzenes, benzil, aldehydes, and ammonium acetate. The major products are obtained with high isolation yields above 60%. To assess the catalyst system's activity, the recovery and reusability of the AC-SO3H/[Urea]7[ZnCl2]2 system were examined with hardly any performance modification. In an effort to create potential enzyme α-glucosidase inhibitors, several novel polysubstituted imidazoles were created. Five of these compounds showed good enzyme α-glucosidase inhibitor activity. The most effective substances were IMI-13, IMI-15, and IMI-20, with IC50 values that were greater than the acarbose at 16.5, 15.8, and 11.6 μM, respectively - the acarbose (IC50, 214.5 μM) as the positive control.
Collapse
Affiliation(s)
- Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Viet Nam
- Vietnam National University Ho Chi Minh City 7000000 Viet Nam
| | - Vy Anh Truong
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Viet Nam
- Vietnam National University Ho Chi Minh City 7000000 Viet Nam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Viet Nam
- Vietnam National University Ho Chi Minh City 7000000 Viet Nam
| |
Collapse
|
10
|
Chakraborty S, Paul B, De UC, Natarajan R, Majumdar S. Water-SDS-[BMIm]Br composite system for one-pot multicomponent synthesis of pyrano[2,3- c]pyrazole derivatives and their structural assessment by NMR, X-ray, and DFT studies. RSC Adv 2023; 13:6747-6759. [PMID: 36860543 PMCID: PMC9969234 DOI: 10.1039/d3ra00137g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Here, we report a simple, efficient, and green protocol for the one-pot synthesis of pyrano[2,3-c]pyrazole derivatives via a sequential three-component strategy using aromatic aldehydes, malononitrile and pyrazolin-5-one in a water-SDS-ionic liquid system. This is a base and volatile organic solvent-free approach that could be applicable to a wide substrate scope. The key advantages of the method over other established protocols are very high yield, eco-friendly conditions, chromatography-free purification and recyclability of the reaction medium. Our study revealed that the N-substituent present in pyrazolinone controls the selectivity of the process. N-unsubstituted pyrazolinone favours the formation of 2,4-dihydro pyrano[2,3-c]pyrazoles whereas under identical conditions N-phenyl substituent pyrazolinone favours the formation 1,4-dihydro pyrano[2,3-c]pyrazoles. Structures of the synthesized products were established by NMR and X-ray diffraction techniques. Energy optimized structures and energy gaps between the HOMO-LUMO of some selected compounds were estimated using density functional theory to explain the extra stability of the 2,4-dihydro pyrano[2,3-c]pyrazoles over 1,4-dihydro pyrano[2,3-c]pyrazoles.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| | - Bhaswati Paul
- CSIR-Indian Institute of Chemical Biology4,Raja S. C. Mullick RoadKolkata 700 032India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| | - Ramalingam Natarajan
- CSIR-Indian Institute of Chemical Biology4,Raja S. C. Mullick RoadKolkata 700 032India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| |
Collapse
|
11
|
Nguyen HT, Dang PH, Tran PH. A new and straightforward route to synthesize novel pyrazolo[3,4- b]pyridine-5-carboxylate scaffolds from 1,4-dihydropyrano[2,3- c]pyrazole-5-carbonitriles. RSC Adv 2023; 13:1877-1882. [PMID: 36712648 PMCID: PMC9832579 DOI: 10.1039/d2ra07521k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 01/13/2023] Open
Abstract
Among many acidic catalysts, amorphous carbon-supported sulfonic acid (AC-SO3H) has been evaluated as a new-generation solid catalyst with outstanding activity. Because of the -SO3H groups, the surface properties of the amorphous carbon catalyst were improved, which made the catalytic activity of the amorphous carbon-supported sulfonic acid many times greater than that of sulfuric acid. The amorphous carbon-supported sulfonic acid exhibited several advantages such as low cost, non-toxicity, porosity, stability, and easily adjustable chemical surface. In this paper, we introduce a new pathway for the synthesis of pyrazolo[3,4-b]pyridine-5-carboxylate scaffolds from 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles and aniline at room temperature under ethanol in the presence of AC-SO3H as the catalyst. This method provided the desired products with moderate to good yields. The gram-scale synthesis of the major product was carried out with good yields (up to 80%). This strategy involves a sequential opening/closing cascade reaction. This approach presents several advantages, including room temperature conditions, short reaction time, and operational simplicity.
Collapse
Affiliation(s)
- Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of ScienceHo Chi Minh City 700000Viet Nam,Vietnam National UniversityHo Chi Minh City 700000Viet Nam
| | - Phu Hoang Dang
- Department of Organic Chemistry, Faculty of Chemistry, University of ScienceHo Chi Minh City 700000Viet Nam,Vietnam National UniversityHo Chi Minh City 700000Viet Nam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of ScienceHo Chi Minh City 700000Viet Nam,Vietnam National UniversityHo Chi Minh City 700000Viet Nam
| |
Collapse
|