1
|
Qiu X, Yan D, Xu L, Wang Y, Mao Y, Yang C, Li Y, Sun Y. Topical delivery performance of Pickering emulsions stabilized by differently charged spirulina protein isolate/Chitosan composite particles. Int J Pharm 2025; 671:125284. [PMID: 39892675 DOI: 10.1016/j.ijpharm.2025.125284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Pickering emulsions, stabilized by particulate particles, have emerged as a promising vehicle for topical delivery. Herein, Pickering emulsions stabilized by differently charged spirulina protein isolate - chitosan (SC) composite particles were studied for effective topical delivery of α-Bisabolol (ABS). The composite particles were synthesized via electrostatic assembly of spirulina protein isolate (SPI) and chitosan (CS), and their surface charge was assessed using zeta potential measurements. The Pickering emulsions stabilized by SC composite particles with different charges were all stable over 30 days and had a high encapsulation efficiency for ABS. In vitro skin permeation study revealed that positively charged emulsions significantly increased ABS retention within the skin, predominantly in the stratum corneum layer. The underlying delivery mechanism was further explored using attenuated total reflection Fourier transform infrared spectroscopy. Lastly, the influence of particle concentration and oil phase volume fraction on the topical delivery efficiency was conducted to optimize the Pickering formulations. This study provides insight into the role of particle charge in enhancing topical delivery of Pickering emulsions.
Collapse
Affiliation(s)
- Xiaoyuan Qiu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 China
| | - Danni Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 China
| | - Linghui Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 China
| | - Ying Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 China
| | - Yi Mao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 China
| | - Yajuan Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 China.
| |
Collapse
|
2
|
Sharma A, Anand M, Chakraborty S. Influence of CTAB Reverse Micellar Confinement on the Tetrahedral Structure of Liquid Water. J Phys Chem B 2025; 129:1289-1300. [PMID: 39817321 DOI: 10.1021/acs.jpcb.4c04773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The effect of confinement on the tetrahedral ordering of liquid water plays a vital role in controlling their microscopic structure and dynamics as well as their spectroscopic properties. In this article, we have performed the classical molecular dynamics simulations of four different CTAB/water/chloroform reverse micelles with varied water content to study how the tetrahedral ordering of nanoscale water inside reverse micellar confinement influences the microscopic dynamics and the structural relaxation of water···water hydrogen bonds and its impact on the low-frequency intermolecular vibrational bands. We have noticed from the results obtained from simulated trajectories the lowering trends of tetrahedral ordering of water pools in reverse micellar confinements as we move from bulk to confined and strictly confined environments. We have observed that the order of confinements significantly altered the relaxation pattern of water···water hydrogen bonds present in the nanoscale water pool of reverse micelles. The recrossing related to hydrogen bond dynamics can effectively explain the relaxation pattern of C HB WW ( t ) under confinement. The Br-1···water hydrogen bond depicts a much slower relaxation compared to the water···water hydrogen bonds inside reverse micelles. We have also explored the correlation between the tetrahedral ordering of nanoscale water pools and the relaxation of water···water hydrogen bonds with the 50 cm-1 band for water inside reverse micelles. The computations reported that compared to bulk water, the band appearing at 50 cm-1 for O···O···O triplet bending is nonuniformly blue-shifted by 18-45 cm-1 for the nanoscale water pool inside reverse micelles, and the intensity of the band drops from bulk to confined and strictly confined environments, which indicates the reduced tendency of such triplet formation. It is observed that a significant intensity variation at the 200 cm-1 band correlates with the effect of confinement on the tetrahedral ordering of the water pool inside reverse micelles. So, our observations support the influence of strictly confined environments on the tetrahedral water structure to adopt the quasi-two-dimensional water network and experience restricted longitudinal translations. It is further noticed that the 500 cm-1 librational band is also found to be blue-shifted by 71-112 cm-1 for the water pool in reverse micelles, and the extent of the shift being more noticeable for strictly confined environments correlates excellently with the sluggish relaxation of water···water hydrogen bonds in such environments.
Collapse
Affiliation(s)
- Anupama Sharma
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Mywish Anand
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Sudip Chakraborty
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
3
|
Jahan S, Ali A, Sultana N, Qizilbash FF, Ali H, Aqil M, Mujeeb M, Ali A. An overview of phospholipid enriched-edge activator-based vesicle nanocarriers: new paradigms to treat skin cancer. J Drug Target 2025; 33:17-41. [PMID: 39246202 DOI: 10.1080/1061186x.2024.2402750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Skin cancer poses a significant global health concern necessitating innovative treatment approaches. This review explores the potential of vesicle nanoformulation incorporating EA (edge activators) to overcome barriers in skin cancer management. The skin's inherent protective mechanisms, specifically the outermost layer called the stratum corneum and the network of blood arteries, impede the permeation of drugs. Phospholipid-enriched EA based nanoformulation offer a promising solution by enhancing drug penetration through skin barriers. EAs like Span 80, Span 20, Tween 20, and sodium cholate etc., enhance vesicles deformability, influencing drug permeation. This review discusses topical application of drugs treat skin cancer, highlighting challenges connected with the conventional liposome and the significance of using EA-based nanoformulation in overcoming these challenges. Furthermore, it provides insights into various EA characteristics, critical insights, clinical trials, and patents. The review also offers a concise overview of composition, preparation techniques, and the application of EA-based nanoformulation such as transfersomes, transliposomes, transethosomes, and transniosomes for delivering drugs to treat skin cancer. Overall, this review intends to accelerate the development of formulations that incorporate EA, which would further improve topical drug delivery and enhance therapeutic outcomes in skin cancer treatment.
Collapse
Affiliation(s)
- Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Niha Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Farheen Fatima Qizilbash
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Hamad Ali
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Mujeeb
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Musiał W, Caddeo C, Jankowska-Konsur A, Passiu G, Urbaniak T, Twarda M, Zalewski A. Electrical Conductivity as an Informative Factor of the Properties of Liposomal Systems with Naproxen Sodium for Transdermal Application. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5666. [PMID: 39597489 PMCID: PMC11595757 DOI: 10.3390/ma17225666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Liposomal preparations play an important role as formulations for transdermal drug delivery; however, the electrical conductivity of these systems is sparingly evaluated. The aim of the study was to outline the range of the values of electrical conductivity values that may be recorded in the future pharmaceutical systems in the context of their viscosity. The electrical conductivity, measured by a conductivity probe of k = 1.0 cm-1, and the dynamic viscosity of liposomal and non-liposomal systems with naproxen sodium, embedded into a methylcellulose hydrophilic gel (0.25%), were compared with data from preparations without naproxen sodium in a range reflecting the naproxen sodium concentrations 0.1·10-2-9.5·10-2 mol/L. The specific conductivity covered a 1.5 μS·cm-1-5616.0 μS·cm-1 range, whereas the viscosity ranged from 0.9 to 9.4 mPa·s. The naproxen sodium highly influenced the electrical conductivity, whereas the dynamic viscosity was a moderate factor. The observed phenomena may be ascribed to the high mobility of sodium ions recruited from naproxen sodium and the relatively low concentrations of applied methylcellulose. The assembly of lecithin in liposomes may have lowered the specific conductivity of the systems with naproxen sodium. These measurements will be further developed for implementation as simple assays of the concentrations of active pharmaceutical ingredient in release experiments of preparations proposed for dermatological applications.
Collapse
Affiliation(s)
- Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Carla Caddeo
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, 09042 Monserrato, Italy; (C.C.)
| | - Alina Jankowska-Konsur
- Clinical Department of Oncodermatology, University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (A.J.-K.)
| | - Giorgio Passiu
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, 09042 Monserrato, Italy; (C.C.)
| | - Tomasz Urbaniak
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Maria Twarda
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Adam Zalewski
- Clinical Department of Oncodermatology, University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (A.J.-K.)
| |
Collapse
|
5
|
Nabila FH, Islam R, Shimul IM, Moniruzzaman M, Wakabayashi R, Kamiya N, Goto M. Ionic liquid-mediated ethosome for transdermal delivery of insulin. Chem Commun (Camb) 2024; 60:4036-4039. [PMID: 38466016 DOI: 10.1039/d3cc06130b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Herein, we report ethosome (ET) formulations composed of a safe amount of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)-based ionic liquid with various concentrations of ethanol as a carrier for the transdermal delivery of a high molecular weight drug, insulin. The Insulin-loaded ET vesicles exhibited long-term stability compared to conventional DMPC ETs, showing significantly higher drug encapsulation efficiency and increased skin permeation ability.
Collapse
Affiliation(s)
- Fahmida Habib Nabila
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Rashedul Islam
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Islam Md Shimul
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Sohn JS, Choi JS. Development of a tadalafil transdermal formulation and evaluation of its ability to in vitro transdermal permeate using Strat-M® membrane. Eur J Pharm Sci 2024; 192:106615. [PMID: 37863443 DOI: 10.1016/j.ejps.2023.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Tadalafil (TDF) has low water solubility, high intestinal permeability and belongs to the Biopharmaceutics Classification System (BCS) Class II. Due to high intestinal permeability, only oral administration (tablets) and oral thin film formulations have been developed. Therefore, it is necessary to develop various formulations, such as external formulations and transdermal absorption formulations requested by patients. The purpose of this study is to improve the solubility and skin permeability of TDF, and to develop a novel transdermal formulation with secured stability over time. The research strategy is to determine solvents that will improve TDF solubility and to screen substances that will enhance TDF permeability. Skin penetration tests were simulated by using a Strat-M® membrane in Franz diffusion cell systems. The optimal formulation (F1, consisting of TDF/HDTMA-Br at a ratio of 1:10 [weight/weight] in DPG) observed the highest permeability compared to all formulations in PBS (pH 7.4). Changes in thermal property of F1 formulation was observed and maintained its stability over 12 months including drug content (μg/mL), appearance, pH, and permeation (μg/cm2). In conclusion, DPG played a supported role in improving both TDF solubilization and permeability, whereas HDTMA-Br played a key role in enhancing permeability. It is thought that these results will be supplemented in the future to conduct research and experiments on humans.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- College of General Education, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin-Seok Choi
- Department of Medical Management, Chodang University, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea.
| |
Collapse
|
7
|
Phanphothong P, Kanpipit N, Thapphasaraphong S. The characteristics and biological activity enhancements of melatonin encapsulations for skin care product applications. Int J Pharm X 2023; 6:100217. [PMID: 37927583 PMCID: PMC10624970 DOI: 10.1016/j.ijpx.2023.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Melatonin (MLT) exhibits antioxidant, ultraviolet protection, anti-inflammatory, and anti-aging properties. However, its effectiveness is limited by instability, a short half-life, and incompatible absorption. In this research, we encapsulated melatonin (MLT) in transfersomes (MT) and niosomes (MN) to enhance their properties and investigate their effects through in vitro cell assays using murine macrophages cells and human foreskin fibroblasts cells. The vesicle morphology, vesicle size, polydispersity index, zeta potential, entrapment efficiency (EE%), attenuated total reflectance-Fourier transform spectroscopy (ATR-FTIR) spectra, along with in vitro release, permeation profiles, and stability study were also evaluated. The results showed that both encapsulations displayed spherical morphology at the nanometric scale, their great physical stability and provided an EE% range of 58-78%. The MLT incorporation into the vesicle was confirmed by the ATR-FTIR spectra. Additionally, the encapsulation' release profiles fitted with the Higuchi model, indicating controlled release of melatonin. Furthermore, MT showed greater permeability than MN and MS including melatonin deposition. In cell assays, MT exhibited significantly higher nitric oxide inhibition and stimulation of collagen compared to MN and MS. Therefore, MT demonstrated the highest possibility for anti-inflammatory and collagen-stimulating activities that could be applied in pharmaceutical or anti-aging cosmetic products.
Collapse
Affiliation(s)
- Phongsapak Phanphothong
- Pharmaceutical Chemistry and Natural Products Program, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nattawadee Kanpipit
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suthasinee Thapphasaraphong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
Sharma G, Mahajan A, Thakur K, Kaur G, Goni VG, Kumar MV, Barnwal RP, Singh G, Singh B, Katare OP. Exploring the therapeutic potential of sodium deoxycholate tailored deformable-emulsomes of etodolac for effective management of arthritis. Sci Rep 2023; 13:21681. [PMID: 38066008 PMCID: PMC10709335 DOI: 10.1038/s41598-023-46119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The current piece of research intends to evaluate the potential of combining etodolac with deformable-emulsomes, a flexible vesicular system, as a promising strategy for the topical therapy of arthritis. The developed carrier system featured nanometric dimensions (102 nm), an improved zeta potential (- 5.05 mV), sustained drug release (31.33%), and enhanced drug deposition (33.13%) of DE-gel vis-à-vis conventional system (10.34% and 14.71%). The amount of permeation of the developed nano formulation across skin layers was demonstrated through CLSM and dermatokinetics studies. The safety profile of deformable-emulsomes has been investigated through in vitro HaCaT cell culture studies and skin compliance studies. The efficacy of the DE-gel formulation was sevenfold higher in case of Xylene induced ear edema model and 2.2-folds in CFA induced arthritis model than that of group treated with conventional gel (p < 0.01). The main technological rationale lies in the use of phospholipid and sodium deoxycholate-based nanoscale flexible lipoidal vesicles, which effectively encapsulate drug molecules within their interiors. This encapsulation enhances the molecular interactions and facilitates the transportation of the drug molecule effectively to the target-site. Hence, these findings offer robust scientific evidence to support additional investigation into the potential utility of flexible vesicular systems as a promising drug delivery alternative for molecules of this nature.
Collapse
Affiliation(s)
- Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Akanksha Mahajan
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Kanika Thakur
- Research Scientist II, Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Gurjeet Kaur
- Department of Renal Transplant Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Vijay G Goni
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Muniramiah Vinod Kumar
- Department of Orthopaedics, East Point College of Medical Sciences and Research Centre, Bangalore, Karnataka, 560049, India
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Vasileva L, Gaynanova G, Valeeva F, Romanova E, Pavlov R, Kuznetsov D, Belyaev G, Zueva I, Lyubina A, Voloshina A, Petrov K, Zakharova L. Synthesis, Properties, and Biomedical Application of Dicationic Gemini Surfactants with Dodecane Spacer and Carbamate Fragments. Int J Mol Sci 2023; 24:12312. [PMID: 37569687 PMCID: PMC10419252 DOI: 10.3390/ijms241512312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
A synthesis procedure and aggregation properties of a new homologous series of dicationic gemini surfactants with a dodecane spacer and two carbamate fragments (N,N'-dialkyl-N,N'-bis(2-(ethylcarbamoyloxy)ethyl)-N,N'-dimethyldodecan-1,6-diammonium dibromide, n-12-n(Et), where n = 10, 12, 14) were comprehensively described. The critical micelle concentrations of gemini surfactants were obtained using tensiometry, conductometry, spectrophotometry, and fluorimetry. The thermodynamic parameters of adsorption and micellization, i.e., maximum surface excess (Гmax), the surface area per surfactant molecule (Amin), degree of counterion binding (β), and Gibbs free energy of micellization (∆Gmic), were calculated. Functional activity of the surfactants, including the solubilizing capacity toward Orange OT and indomethacin, incorporation into the lipid bilayer, minimum inhibitory concentration, and minimum bactericidal and fungicidal concentrations, was determined. Synthesized gemini surfactants were further used for the modification of liposomes dual-loaded with α-tocopherol and donepezil hydrochloride for intranasal treatment of Alzheimer's disease. The obtained liposomes have high stability (more than 5 months), a significant positive charge (approximately + 40 mV), and a high degree of encapsulation efficiency toward rhodamine B, α-tocopherol, and donepezil hydrochloride. Korsmeyer-Peppas, Higuchi, and first-order kinetic models were used to process the in vitro release curves of donepezil hydrochloride. Intranasal administration of liposomes loaded with α-tocopherol and donepezil hydrochloride for 21 days prevented memory impairment and decreased the number of Aβ plaques by 37.6%, 40.5%, and 72.6% in the entorhinal cortex, DG, and CA1 areas of the hippocampus of the brain of transgenic mice with Alzheimer's disease model (APP/PS1) compared with untreated animals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| |
Collapse
|
10
|
Filipiuc SI, Neagu AN, Uritu CM, Tamba BI, Filipiuc LE, Tudorancea IM, Boca AN, Hâncu MF, Porumb V, Bild W. The Skin and Natural Cannabinoids-Topical and Transdermal Applications. Pharmaceuticals (Basel) 2023; 16:1049. [PMID: 37513960 PMCID: PMC10386449 DOI: 10.3390/ph16071049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The chemical constituents of the Cannabis plant known as cannabinoids have been extensively researched for their potential therapeutic benefits. The use of cannabinoids applied to the skin as a potential method for both skin-related benefits and systemic administration has attracted increasing interest in recent years. This review aims to present an overview of the most recent scientific research on cannabinoids used topically, including their potential advantages for treating a number of skin conditions like psoriasis, atopic dermatitis, and acne. Additionally, with a focus on the pharmacokinetics and security of this route of administration, we investigate the potential of the transdermal delivery of cannabinoids as a method of systemic administration. The review also discusses the restrictions and difficulties related to the application of cannabinoids on the skin, emphasizing the potential of topical cannabinoids as a promising route for both localized and systemic administration. More studies are required to fully comprehend the efficacy and safety of cannabinoids in various settings.
Collapse
Affiliation(s)
- Silviu-Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I bvd, No. 20A, 700505 Iasi, Romania
| | - Cristina Mariana Uritu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Andreea Nicoleta Boca
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | | | - Vlad Porumb
- Department Surgery, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Walther Bild
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| |
Collapse
|
11
|
Isopencu GO, Covaliu-Mierlă CI, Deleanu IM. From Plants to Wound Dressing and Transdermal Delivery of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:2661. [PMID: 37514275 PMCID: PMC10386126 DOI: 10.3390/plants12142661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Transdermal delivery devices and wound dressing materials are constantly improved and upgraded with the aim of enhancing their beneficial effects, biocompatibility, biodegradability, and cost effectiveness. Therefore, researchers in the field have shown an increasing interest in using natural compounds as constituents for such systems. Plants, as an important source of so-called "natural products" with an enormous variety and structural diversity that still exceeds the capacity of present-day sciences to define or even discover them, have been part of medicine since ancient times. However, their benefits are just at the beginning of being fully exploited in modern dermal and transdermal delivery systems. Thus, plant-based primary compounds, with or without biological activity, contained in gums and mucilages, traditionally used as gelling and texturing agents in the food industry, are now being explored as valuable and cost-effective natural components in the biomedical field. Their biodegradability, biocompatibility, and non-toxicity compensate for local availability and compositional variations. Also, secondary metabolites, classified based on their chemical structure, are being intensively investigated for their wide pharmacological and toxicological effects. Their impact on medicine is highlighted in detail through the most recent reported studies. Innovative isolation and purification techniques, new drug delivery devices and systems, and advanced evaluation procedures are presented.
Collapse
Affiliation(s)
- Gabriela Olimpia Isopencu
- Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest, Polizu Str. 1-7, 011061 Bucharest, Romania
| | - Cristina-Ileana Covaliu-Mierlă
- Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Iuliana-Mihaela Deleanu
- Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest, Polizu Str. 1-7, 011061 Bucharest, Romania
| |
Collapse
|
12
|
Vasileva L, Gaynanova G, Valeeva F, Belyaev G, Zueva I, Bushmeleva K, Sibgatullina G, Samigullin D, Vyshtakalyuk A, Petrov K, Zakharova L, Sinyashin O. Mitochondria-Targeted Delivery Strategy of Dual-Loaded Liposomes for Alzheimer's Disease Therapy. Int J Mol Sci 2023; 24:10494. [PMID: 37445673 DOI: 10.3390/ijms241310494] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Liposomes modified with tetradecyltriphenylphosphonium bromide with dual loading of α-tocopherol and donepezil hydrochloride were successfully designed for intranasal administration. Physicochemical characteristics of cationic liposomes such as the hydrodynamic diameter, zeta potential, and polydispersity index were within the range from 105 to 115 nm, from +10 to +23 mV, and from 0.1 to 0.2, respectively. In vitro release curves of donepezil hydrochloride were analyzed using the Korsmeyer-Peppas, Higuchi, First-Order, and Zero-Order kinetic models. Nanocontainers modified with cationic surfactant statistically better penetrate into the mitochondria of rat motoneurons. Imaging of rat brain slices revealed the penetration of nanocarriers into the brain. Experiments on transgenic mice with an Alzheimer's disease model (APP/PS1) demonstrated that the intranasal administration of liposomes within 21 days resulted in enhanced learning abilities and a reduction in the formation rate of Aβ plaques in the entorhinal cortex and hippocampus of the brain.
Collapse
Affiliation(s)
- Leysan Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Farida Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Grigory Belyaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Irina Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Kseniya Bushmeleva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 2/31 Lobachevsky Str., 420111 Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 2/31 Lobachevsky Str., 420111 Kazan, Russia
- Institute for Radio-Electronics and Telecommunications, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., 420111 Kazan, Russia
| | - Alexandra Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia
| |
Collapse
|
13
|
Kharwade R, Ali N, Gangane P, Pawar K, More S, Iqbal M, Bhat AR, AlAsmari AF, Kaleem M. DOE-Assisted Formulation, Optimization, and Characterization of Tioconazole-Loaded Transferosomal Hydrogel for the Effective Treatment of Atopic Dermatitis: In Vitro and In Vivo Evaluation. Gels 2023; 9:gels9040303. [PMID: 37102915 PMCID: PMC10137874 DOI: 10.3390/gels9040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
The present study was performed to determine the therapeutic effects of tioconazole (Tz)-loaded novel transferosome carriers (TFs) for the treatment of atopic dermatitis (AD). Method: Tioconazole transferosomes suspension (TTFs) was formulated and optimized using a 32 factorial design. After that, the optimized batch of TTFs loaded into Carbopol 934 and sodium CMC was prepared with hydrogel and noted as TTFsH. Subsequently, it was evaluated for pH, spread ability, drug content, in vitro drug release, viscosity, in vivo scratching and erythema score, skin irritation, and histopathology study. Result: The optimized batch of TTFs (B4) showed the values of vesicle size, flux, and entrapment efficiency to be 171.40 ± 9.03 nm, 48.23 ± 0.42, and 93.89 ± 2.41, respectively. All batches of TTFsH showed sustained drug release for up to 24 h. The F2 optimized batch released Tz in an amount of 94.23 ± 0.98% with a flux of 47.23 ± 0.823 and followed the Higuchi kinetic model. The in vivo studies provided evidence that the F2 batch of TTFsH was able to treat atopic dermatitis (AD) by reducing the erythema and the scratching score compared to that of the marketed formulation (Candiderm cream, Glenmark). The histopathology study supported the result of the erythema and scratching score study with intact skin structure. It showed that a formulated low dose of TTFsH was safe and biocompatible to both the dermis and the epidermis layer of skin. Conclusion: Thus, a low dose of F2-TTFsH is a promising tool that effectively targeted the skin for the topical delivery of Tz to treat atopic dermatitis symptoms.
Collapse
Affiliation(s)
- Rohini Kharwade
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Purushottam Gangane
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Kapil Pawar
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Sachin More
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abid R. Bhat
- Department of Emergency Medicine, University of Maryland School of Medicine, 685 West Baltimore St, HSFI Rm 280I, Baltimore, MD 21201, USA
| | - Abdullah F. AlAsmari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| |
Collapse
|
14
|
Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020656. [PMID: 36839978 PMCID: PMC9967415 DOI: 10.3390/pharmaceutics15020656] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Skin delivery is an exciting and challenging field. It is a promising approach for effective drug delivery due to its ease of administration, ease of handling, high flexibility, controlled release, prolonged therapeutic effect, adaptability, and many other advantages. The main associated challenge, however, is low skin permeability. The skin is a healthy barrier that serves as the body's primary defence mechanism against foreign particles. New advances in skin delivery (both topical and transdermal) depend on overcoming the challenges associated with drug molecule permeation and skin irritation. These limitations can be overcome by employing new approaches such as lipid nanosystems. Due to their advantages (such as easy scaling, low cost, and remarkable stability) these systems have attracted interest from the scientific community. However, for a successful formulation, several factors including particle size, surface charge, components, etc. have to be understood and controlled. This review provided a brief overview of the structure of the skin as well as the different pathways of nanoparticle penetration. In addition, the main factors influencing the penetration of nanoparticles have been highlighted. Applications of lipid nanosystems for dermal and transdermal delivery, as well as regulatory aspects, were critically discussed.
Collapse
|
15
|
Vasilieva EA, Kuznetsova DA, Valeeva FG, Kuznetsov DM, Zakharov AV, Amerhanova SK, Voloshina AD, Zueva IV, Petrov KA, Zakharova LY. Therapy of Organophosphate Poisoning via Intranasal Administration of 2-PAM-Loaded Chitosomes. Pharmaceutics 2022; 14:pharmaceutics14122846. [PMID: 36559339 PMCID: PMC9781263 DOI: 10.3390/pharmaceutics14122846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chitosan-decorated liposomes were proposed for the first time for the intranasal delivery of acetylcholinesterase (AChE) reactivator pralidoxime chloride (2-PAM) to the brain as a therapy for organophosphorus compounds (OPs) poisoning. Firstly, the chitosome composition based on phospholipids, cholesterol, chitosans (Cs) of different molecular weights, and its arginine derivative was developed and optimized. The use of the polymer modification led to an increase in the encapsulation efficiency toward rhodamine B (RhB; ~85%) and 2-PAM (~60%) by 20% compared to conventional liposomes. The formation of monodispersed and stable nanosized particles with a hydrodynamic diameter of up to 130 nm was shown using dynamic light scattering. The addition of the polymers recharged the liposome surface (from -15 mV to +20 mV), which demonstrates the successful deposition of Cs on the vesicles. In vitro spectrophotometric analysis showed a slow release of substrates (RhB and 2-PAM) from the nanocontainers, while the concentration and Cs type did not significantly affect the chitosome permeability. Flow cytometry and fluorescence microscopy qualitatively and quantitatively demonstrated the penetration of the developed chitosomes into normal Chang liver and M-HeLa cervical cancer cells. At the final stage, the ability of the formulated 2-PAM to reactivate brain AChE was assessed in a model of paraoxon-induced poisoning in an in vivo test. Intranasal administration of 2-PAM-containing chitosomes allows it to reach the degree of enzyme reactivation up to 35 ± 4%.
Collapse
|
16
|
Kuznetsova DA, Kuznetsov DM, Vasileva LA, Amerhanova SK, Valeeva DN, Salakhieva DV, Nikolaeva VA, Nizameev IR, Islamov DR, Usachev KS, Voloshina AD, Zakharova LY. Complexation of Oligo- and Polynucleotides with Methoxyphenyl-Functionalized Imidazolium Surfactants. Pharmaceutics 2022; 14:pharmaceutics14122685. [PMID: 36559178 PMCID: PMC9782993 DOI: 10.3390/pharmaceutics14122685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Interaction between cationic surfactants and nucleic acids attracts much attention due to the possibility of using such systems for gene delivery. Herein, the lipoplexes based on cationic surfactants with imidazolium head group bearing methoxyphenyl fragment (MPI-n, n = 10, 12, 14, 16) and nucleic acids (oligonucleotide and plasmid DNA) were explored. The complex formation was confirmed by dynamic/electrophoretic light scattering, transmission electron microscopy, fluorescence spectroscopy, circular dichroism, and gel electrophoresis. The nanosized lipoplex formation (of about 100-200 nm), contributed by electrostatic, hydrophobic interactions, and intercalation mechanism, has been shown. Significant effects of the hydrocarbon tail length of surfactant and the type of nucleic acid on their interaction was revealed. The cytotoxic effect and transfection ability of lipoplexes studied were determined using M-HeLa, A549 cancer cell lines, and normal Chang liver cells. A selective reduced cytotoxic effect of the complexes on M-HeLa cancer cells was established, as well as a high ability of the systems to be transfected into cancer cells. MPI-n/DNA complexes showed a pronounced transfection activity equal to the commercial preparation Lipofectamine 3000. Thus, it has been shown that MPI-n surfactants are effective agents for nucleic acid condensation and can be considered as potential non-viral vectors for gene delivery.
Collapse
Affiliation(s)
- Darya A. Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
- Correspondence:
| | - Denis M. Kuznetsov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Leysan A. Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Syumbelya K. Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Dilyara N. Valeeva
- Institute of Innovation Management, Kazan National Research Technological University, Karl Marx Str. 68, 420015 Kazan, Russia
| | - Diana V. Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Viktoriia A. Nikolaeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Irek R. Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Daut R. Islamov
- FRC Kazan Scientific Center of RAS, Russian Academy of Sciences, Lobachevsky Street 2/31, 420111 Kazan, Russia
| | - Konstantin S. Usachev
- FRC Kazan Scientific Center of RAS, Russian Academy of Sciences, Lobachevsky Street 2/31, 420111 Kazan, Russia
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Lucia Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| |
Collapse
|
17
|
Stepanova DA, Pigareva VA, Berkovich AK, Bolshakova AV, Spiridonov VV, Grozdova ID, Sybachin AV. Ultrasonic Film Rehydration Synthesis of Mixed Polylactide Micelles for Enzyme-Resistant Drug Delivery Nanovehicles. Polymers (Basel) 2022; 14:4013. [PMID: 36235958 PMCID: PMC9571646 DOI: 10.3390/polym14194013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
A facile technique for the preparation of mixed polylactide micelles from amorphous poly-D,L-lactide-block-polyethyleneglycol and crystalline amino-terminated poly-L-lactide is described. In comparison to the classical routine solvent substitution method, the ultrasonication assisted formation of polymer micelles allows shortening of the preparation time from several days to 15-20 min. The structure and morphology of mixed micelles were analyzed with the assistance of electron microscopy, dynamic and static light scattering and differential scanning calorimetery. The resulting polymer micelles have a hydrodynamic radius of about 150 nm and a narrow size distribution. The average molecular weight of micelles was found to be 2.1 × 107 and the aggregation number was calculated to be 6000. The obtained biocompatible particles were shown to possess low cytotoxicity, high colloid stability and high stability towards enzymatic hydrolysis. The possible application of mixed polylactide micelles as drug delivery vehicles was studied for the antitumor hydrophobic drug paclitaxel. The lethal concentration (LC50) of paclitaxel encapsulated in polylactide micelles was found to be 42 ± 4 µg/mL-a value equal to the LC50 of paclitaxel in the commercial drug Paclitaxel-Teva.
Collapse
Affiliation(s)
- Darya A. Stepanova
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladislava A. Pigareva
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna K. Berkovich
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia V. Bolshakova
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Vasiliy V. Spiridonov
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina D. Grozdova
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey V. Sybachin
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
18
|
Kuznetsova DA, Gaynanova GA, Vasilieva EA, Pavlov RV, Zueva IV, Babaev VM, Kuznetsov DM, Voloshina AD, Petrov KA, Zakharova LY, Sinyashin OG. Oxime Therapy for Brain AChE Reactivation and Neuroprotection after Organophosphate Poisoning. Pharmaceutics 2022; 14:pharmaceutics14091950. [PMID: 36145698 PMCID: PMC9506492 DOI: 10.3390/pharmaceutics14091950] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
One of the main problems in the treatment of poisoning with organophosphorus (OPs) inhibitors of acetylcholinesterase (AChE) is low ability of existing reactivators of AChE that are used as antidotes to cross the blood-brain barrier (BBB). In this work, modified cationic liposomes were developed that can penetrate through the BBB and deliver the reactivator of AChE pralidoxime chloride (2-PAM) into the brain. Liposomes were obtained on the basis of phosphatidylcholine and imidazolium surfactants. To obtain the composition optimized in terms of charge, stability, and toxicity, the molar ratio of surfactant/lipid was varied. For the systems, physicochemical parameters, release profiles of the substrates (rhodamine B, 2-PAM), hemolytic activity and ability to cause hemagglutination were evaluated. Screening of liposome penetration through the BBB, analysis of 2-PAM pharmacokinetics, and in vivo AChE reactivation showed that modified liposomes readily pass into the brain and reactivate brain AChE in rats poisoned with paraoxon (POX) by 25%. For the first time, an assessment was made of the ability of imidazolium liposomes loaded with 2-PAM to reduce the death of neurons in the brains of mice. It was shown that intravenous administration of liposomal 2-PAM can significantly reduce POX-induced neuronal death in the hippocampus.
Collapse
|