Prayoga DK, Pitaloka DAE, Aulifa DL, Budiman A, Levita J, Jiranusornkul S, Nguyen BP. Phytochemical Analysis, Computational Study, and in vitro Assay of
Etlingera elatior Inflorescence Extract Towards Inducible Nitric Oxide Synthase.
J Exp Pharmacol 2025;
17:123-141. [PMID:
40078169 PMCID:
PMC11899951 DOI:
10.2147/jep.s505658]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 03/14/2025] Open
Abstract
Background
Overproduction of nitric oxide (NO), catalyzed by inducible nitric oxide synthase (iNOS), in the gastric mucosa, contributes to the inflammatory process caused by oxidative stress. Current medications for gastric ulcers, such as proton pump inhibitors and histamine-2 receptor antagonists, have been reported to generate adverse reactions.
Purpose
To obtain the phytochemical profile of Etlingera elatior inflorescence extract, computational studies, and in vitro assay of the extract towards iNOS.
Methods
Fresh E. elatior inflorescence petals collected from West Java, Indonesia, were extracted using ethanol, and their nutritional composition, anthocyanin content, and levels of vitamin C, C3G, and quercetin in the extract were determined. Drug-likeness and ADMET properties were predicted, and the binding affinity and stability of the phytoconstituents towards iNOS were studied using molecular docking and molecular dynamic simulation, and in vitro assay of the extract towards human iNOS.
Results
The extract contains protein 21.81%, fat 0.99%, carbohydrate 38.27%, water 24.56%, and ash 14.37%. The total anthocyanin and vitamin C levels were 47.535 mg/100 g and 985.250 mg/100 g, respectively. The levels of C3G and quercetin were 0.0007% w/w, 0.004% w/w, and 0.0005% w/w, respectively. Drug-likeness and ADMET properties of the constituents showed that most followed Lipinski Rules of Five (Ro5), with few violations. All phytoconstituents occupied the catalytic site by binding to Glu377, and Trp372, similar to S-ethylisothiourea (SEITU) and quinazoline, the iNOS inhibitors. Among these, the flavylium cation of cyanidin, demethoxycurcumin, C3G, cyanidin, and quercetin showed the best binding affinities. Root mean square deviation (RMSD), root mean square fluctuation (RMSF), solvent-accessible surface area (SASA), and radius of gyration (Rg) graphs confirmed the stability of the complexes. E. elatior inflorescence extract inhibited human iNOS with an IC50 value of 24.718 µg/mL.
Conclusion
Etlingera elatior inflorescence may inhibit iNOS activity due to its anthocyanin and flavonoid content. The flavylium cation of cyanidin, demethoxycurcumin, C3G, cyanidin, and quercetin play leading roles in the interaction with iNOS.
Collapse