1
|
Li H, Mazli W, Hao L. Overcoming Analytical Challenges in Proximity Labeling Proteomics. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5134. [PMID: 40195276 PMCID: PMC11976124 DOI: 10.1002/jms.5134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025]
Abstract
Proximity labeling (PL) proteomics has emerged as a powerful tool to capture both stable and transient protein interactions and subcellular networks. Despite the wide biological applications, PL still faces technical challenges in robustness, reproducibility, specificity, and sensitivity. Here, we discuss major analytical challenges in PL proteomics and highlight how the field is advancing to address these challenges by refining study design, tackling interferences, overcoming variation, developing novel tools, and establishing more robust platforms. We also provide our perspectives on best practices and the need for more robust, scalable, and quantitative PL technologies.
Collapse
Affiliation(s)
- Haorong Li
- Department of ChemistryThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | | | - Ling Hao
- Department of ChemistryThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
2
|
Hwang JH, Lai A, Tung JP, Harkin DG, Flower RL, Pecheniuk NM. Proteomic Characterization of Transfusable Blood Components: Fresh Frozen Plasma, Cryoprecipitate, and Derived Extracellular Vesicles via Data-Independent Mass Spectrometry. J Proteome Res 2024; 23:4508-4522. [PMID: 39254217 DOI: 10.1021/acs.jproteome.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of particles that play a crucial role in cell-to-cell communication, primarily due to their ability to transport molecules, such as proteins. Thus, profiling EV-associated proteins offers insight into their biological effects. EVs can be isolated from various biological fluids, including donor blood components such as cryoprecipitate and fresh frozen plasma (FFP). In this study, we conducted a proteomic analysis of five single donor units of cryoprecipitate, FFP, and EVs derived from these blood components using a quantitative mass spectrometry approach. EVs were successfully isolated from both cryoprecipitate and FFP based on community guidelines. We identified and quantified approximately 360 proteins across all sample groups. Principal component analysis and heatmaps revealed that both cryoprecipitate and FFP are similar. Similarly, EVs derived from cryoprecipitate and FFP are comparable. However, they differ between the originating fluids and their derived EVs. Using the R-package MS-DAP, differentially expressed proteins (DEPs) were identified. The DEPs for all comparisons, when submitted for gene enrichment analysis, are involved in the complement and coagulation pathways. The protein profile generated from this study will have important clinical implications in increasing our knowledge of the proteins that are associated with EVs derived from blood components.
Collapse
Affiliation(s)
- Ji Hui Hwang
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Andrew Lai
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - John-Paul Tung
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Damien G Harkin
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Robert L Flower
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| |
Collapse
|
3
|
Kurgan N, Kjærgaard Larsen J, Deshmukh AS. Harnessing the power of proteomics in precision diabetes medicine. Diabetologia 2024; 67:783-797. [PMID: 38345659 DOI: 10.1007/s00125-024-06097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 03/21/2024]
Abstract
Precision diabetes medicine (PDM) aims to reduce errors in prevention programmes, diagnosis thresholds, prognosis prediction and treatment strategies. However, its advancement and implementation are difficult due to the heterogeneity of complex molecular processes and environmental exposures that influence an individual's disease trajectory. To address this challenge, it is imperative to develop robust screening methods for all areas of PDM. Innovative proteomic technologies, alongside genomics, have proven effective in precision cancer medicine and are showing promise in diabetes research for potential translation. This narrative review highlights how proteomics is well-positioned to help improve PDM. Specifically, a critical assessment of widely adopted affinity-based proteomic technologies in large-scale clinical studies and evidence of the benefits and feasibility of using MS-based plasma proteomics is presented. We also present a case for the use of proteomics to identify predictive protein panels for type 2 diabetes subtyping and the development of clinical prediction models for prevention, diagnosis, prognosis and treatment strategies. Lastly, we discuss the importance of plasma and tissue proteomics and its integration with genomics (proteogenomics) for identifying unique type 2 diabetes intra- and inter-subtype aetiology. We conclude with a call for action formed on advancing proteomics technologies, benchmarking their performance and standardisation across sites, with an emphasis on data sharing and the inclusion of diverse ancestries in large cohort studies. These efforts should foster collaboration with key stakeholders and align with ongoing academic programmes such as the Precision Medicine in Diabetes Initiative consortium.
Collapse
Affiliation(s)
- Nigel Kurgan
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Kjærgaard Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Mukherjee S, Nag S, Mukerjee N, Maitra S, Muthusamy R, Fuloria NK, Fuloria S, Adhikari MD, Anand K, Thorat N, Subramaniyan V, Gorai S. Unlocking Exosome-Based Theragnostic Signatures: Deciphering Secrets of Ovarian Cancer Metastasis. ACS OMEGA 2023; 8:36614-36627. [PMID: 37841156 PMCID: PMC10568589 DOI: 10.1021/acsomega.3c02837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Ovarian cancer (OC) is a common gynecological cancer worldwide. Unfortunately, the lack of early detection methods translates into a substantial cohort of women grappling with the pressing health crisis. The discovery of extracellular vesicles (EVs) (their major subpopulation exosomes, microvesicles, and apoptotic bodies) has provided new insights into the understanding of cancer. Exosomes, a subpopulation of EVs, play a crucial role in cellular communication and reflect the cellular status under both healthy and pathological conditions. Tumor-derived exosomes (TEXs) dynamically influence ovarian cancer progression by regulating uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and the development of drug and therapeutic resistance. In the field of OC diagnostics, TEXs offer potential biomarkers in various body fluids. On the other hand, exosomes have also shown promising abilities to cure ovarian cancer. In this review, we address the interlink between exosomes and ovarian cancer and explore their theragnostic signature. Finally, we highlight future directions of exosome-based ovarian cancer research.
Collapse
Affiliation(s)
- Sayantanee Mukherjee
- Centre
for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Sagnik Nag
- Department
of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu 632014, India
| | - Nobendu Mukerjee
- Department
of Microbiology, West Bengal State University, West Bengal 700126, Kolkata, India
- Department
of Health Sciences, Novel Global Community
Educational Foundation, New South
Wales, Australia
| | - Swastika Maitra
- Department
of Microbiology, Adamas University, West Bengal 700126, Kolkata, India
| | - Raman Muthusamy
- Department
of Microbiology, Centre for Infectious Diseases, Saveetha Dental College, Chennai, Tamil Nadu 600077, India
| | - Neeraj Kumar Fuloria
- Faculty
of Pharmacy, & Centre of Excellence for Biomaterials Engineering, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty
of Pharmacy, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Manab Deb Adhikari
- Department
of Biotechnology, University of North Bengal
Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nanasaheb Thorat
- Limerick
Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy Co. Limerick, Limerick V94T9PX, Ireland
| | - Vetriselvan Subramaniyan
- Jeffrey
Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar
Sunway, 47500 Selangor
Darul Ehsan, Malaysia
- Center
for Transdisciplinary Research, Department of Pharmacology, Saveetha
Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Sukhamoy Gorai
- Rush
University Medical Center, 1620 West Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
5
|
Das K, Mukherjee T, Shankar P. The Role of Extracellular Vesicles in the Pathogenesis of Hematological Malignancies: Interaction with Tumor Microenvironment; a Potential Biomarker and Targeted Therapy. Biomolecules 2023; 13:897. [PMID: 37371477 DOI: 10.3390/biom13060897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development and progression of hematological malignancies. In recent years, studies have focused on understanding how tumor cells communicate within the TME. In addition to several factors, such as growth factors, cytokines, extracellular matrix (ECM) molecules, etc., a growing body of evidence has indicated that extracellular vesicles (EVs) play a crucial role in the communication of tumor cells within the TME, thereby contributing to the pathogenesis of hematological malignancies. The present review focuses on how EVs derived from tumor cells interact with the cells in the TME, such as immune cells, stromal cells, endothelial cells, and ECM components, and vice versa, in the context of various hematological malignancies. EVs recovered from the body fluids of cancer patients often carry the bioactive molecules of the originating cells and hence can be considered new predictive biomarkers for specific types of cancer, thereby also acting as potential therapeutic targets. Here, we discuss how EVs influence hematological tumor progression via tumor-host crosstalk and their use as biomarkers for hematological malignancies, thereby benefiting the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Tanmoy Mukherjee
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Prem Shankar
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| |
Collapse
|
6
|
Lu S, Cui Q, Zheng H, Ma Y, Kang Y, Tang K. Challenges and Opportunities for Extracellular Vesicles in Clinical Oncology Therapy. Bioengineering (Basel) 2023; 10:bioengineering10030325. [PMID: 36978715 PMCID: PMC10045216 DOI: 10.3390/bioengineering10030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles that can be released by all cell types. They may have different biogenesis, physical features, and cargo. EVs are important biomarkers for the diagnosis and prediction of many diseases due to their essential role in intercellular communication, their highly variable cargoes, and their accumulation in various body fluids. These natural particles have been investigated as potential therapeutic materials for many diseases. In our previous studies, the clinical usage of tumor-cell-derived microparticles (T-MPs) as a novel medication delivery system was examined. This review summarizes the clinical translation of EVs and related clinical trials, aiming to provide suggestions for safer and more effective oncology therapeutic systems, particularly in biotherapeutic and immunotherapeutic systems.
Collapse
Affiliation(s)
- Shuya Lu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingfa Cui
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan Zheng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Ma
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanchun Kang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|