1
|
Wang X, Wang S, Tehoungue A, Li Y, Li X, Yanhui, Zhu M, Zhang G, Zhang Y. A robust visualized sericin hydrogel dressing with excellent antioxidative and antimicrobial activities facilitates diabetic wound healing. J Mech Behav Biomed Mater 2025; 165:106927. [PMID: 39952085 DOI: 10.1016/j.jmbbm.2025.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Oxidative stress and infection significantly obstruct the process of diabetic wound healing. Herein, we developed a new sericin hydrogel with excellent antioxidative and antimicrobial features for the treatment of diabetic wounds. This hydrogel was prepared from a native sericin solution collected from silk fibroin-deficient mutant silkworm bodies; it also possesses exceptional ductility, high transparency, and excellent biocompatibility, enabling the hydrogel dressing to effectively eliminate excessive reactive oxygen species, while preventing bacterial infections within the diabetic wound microenvironment. Additionally, the hydrogel facilitates real-time monitoring of wounds and surgical sutures. Furthermore, it demonstrates pH-responsive swelling and degradation properties, along with a microporous structure, which collectively foster a moist, flexible, and breathable environment conducive to tissue regeneration, thereby promoting wound healing. Moreover, the hydrogel promotes the adhesion and proliferation of NIH3T3 cells, and in vivo studies highlight its ability to expedite wound healing. These findings suggest that the formic acid-treated sericin hydrogel dressing holds great promise as an advanced solution for managing diabetic wounds.
Collapse
Affiliation(s)
- Xingyue Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Susu Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Akoumay Tehoungue
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Yurong Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xiang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Yanhui
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Guozheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Yeshun Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
2
|
Ghasemi Toudeshkchouei M, Abdoos H, Ai J, Nourbakhsh MS. Cellulose-based hydrogels enhanced with bioactive molecules for optimal chronic diabetic wound management. J Microencapsul 2025:1-24. [PMID: 40122056 DOI: 10.1080/02652048.2025.2480598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Hydrogels are three-dimensional structures that replicate natural tissues' extracellular matrix (ECM). They are essential for transporting exudates, gases, and moisture and facilitating cellular interactions in tissue engineering and wound healing. The choice of primary material in designing the scaffold is necessary to be paid more attention rather than common sources, including plant fibres like cotton, bamboo, and algae, as well as bacterial and marine-derived materials. Among them, cellulose-based polymers are especially valued for their biocompatibility and ability to promote wound healing. Chronic diabetic wounds pose unique treatment challenges, such as necrosis and infection risks. Consequently, a growing interest is in incorporating bioactive molecules into cellulose-based hydrogels. This article investigates how these infused hydrogels enhance the healing process in chronic diabetic wounds, examining various loading and crosslinking techniques alongside their clinical applications. It also discusses the benefits and limitations of bioactive molecules and their interactions with hydrogels to improve treatment strategies.
Collapse
Affiliation(s)
| | - Hassan Abdoos
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M S Nourbakhsh
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
3
|
Choi D, Bakhtiari M, Pilcher W, Huang C, Thomas BE, Mumme H, Blanco G, Rajani R, Schechter MC, Fayfman M, Santamarina G, Bhasin S, Bhasin M. Single-Cell Analysis of Debrided Diabetic Foot Ulcers Reveals Dysregulated Wound Healing Environment in Non-Hispanic Black Patients. J Invest Dermatol 2025; 145:678-690. [PMID: 39127092 DOI: 10.1016/j.jid.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Diabetic foot ulcer is a critical complication of diabetes, but the wound microenvironment and its healing process are not completely understood. In this study, we optimized single-cell profiling from sharp debrided ulcers. Our findings demonstrate that healing diabetic foot ulcers were significantly enriched with distinct fibroblasts-expressing genes related to inflammation (CHI3L1, IL6) and extracellular matrix remodeling (ASPN), validating our previous studies on surgically resected ulcers. The race-focused analysis depicted lower expression of key healing-associated genes such as CHIL3L1, matrix metalloproteinase 11 gene MMP11, and SFRP4 in fibroblasts of non-Hispanic Black patients than in those of White patients. In cellular communication analysis, healing-enriched fibroblasts of non-Hispanic Black patients exhibited upregulation of signaling pathways such as WNT, whereas those of White patients showed insulin-like GF and Midkine pathways upregulation. Our findings advocate race as a risk marker of diabetic foot ulcer outcomes, likely reflecting underlying disparities in environmental exposures and access to care that profoundly influence healing markers. Using sharp debrided tissues for single-cell assays, this study highlights the need for in-depth investigations into dysregulated wound healing microenvironments of under-represented racial groups.
Collapse
Affiliation(s)
- Dahim Choi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA
| | - Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William Pilcher
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA
| | - Chenbin Huang
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hope Mumme
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Ravi Rajani
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Vascular Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcos C Schechter
- Grady Memorial Hospital, Atlanta, Georgia, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maya Fayfman
- Grady Memorial Hospital, Atlanta, Georgia, USA; Division of Endocrinology Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gabriel Santamarina
- Grady Memorial Hospital, Atlanta, Georgia, USA; Division of Vascular Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Endocrinology Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Swati Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Manoj Bhasin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA; Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
4
|
Wu Q, Ghosal K, Kana'an N, Roy S, Rashed N, Majumder R, Mandal M, Gao L, Farah S. On-demand imidazolidinyl urea-based tissue-like, self-healable, and antibacterial hydrogels for infectious wound care. Bioact Mater 2025; 44:116-130. [PMID: 39484021 PMCID: PMC11525126 DOI: 10.1016/j.bioactmat.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Bacterial wound infections are a growing challenge in healthcare, posing severe risks like systemic infection, organ failure, and sepsis, with projections predicting over 10 million deaths annually by 2050. Antibacterial hydrogels, with adaptable extracellular matrix-like features, are emerging as promising solutions for treating infectious wounds. However, the antibacterial properties of most of these hydrogels are largely attributed to extrinsic agents, and their mechanisms of action remain poorly understood. Herein we introduce for the first time, modified imidazolidinyl urea (IU) as the polymeric backbone for developing tissue-like antibacterial hydrogels. As-designed hydrogels behave tissue-like mechanical features, outstanding antifreeze behavior, and rapid self-healing capabilities. Molecular dynamics (MD) simulation and density functional theory (DFT) calculation were employed to well-understand the extent of H-bonding and metal-ligand coordination to finetune hydrogels' properties. In vitro studies suggest good biocompatibility of hydrogels against mouse fibroblasts & human skin, lung, and red blood cells, with potential wound healing capacity. Additionally, the hydrogels exhibit good 3D printability and remarkable antibacterial activity, attributed to concentration dependent ROS generation, oxidative stress induction, and subsequent disruption of bacterial membrane. On top of that, in vitro biofilm studies confirmed that developed hydrogels are effective in preventing biofilm formation. Therefore, these tissue-mimetic hydrogels present a promising and effective platform for accelerating wound healing while simultaneously controlling bacterial infections, offering hope for the future of wound care.
Collapse
Affiliation(s)
- Qi Wu
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Krishanu Ghosal
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Nadine Kana'an
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shounak Roy
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Nagham Rashed
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ranabir Majumder
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Liang Gao
- Jinan Key Laboratory of High Performance Industrial Software, Jinan Institute of Supercomputing Technology, Jinan, 250000, China
| | - Shady Farah
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
5
|
Wu Y, Wang Y, Li W, Li D, Song P, Kang Y, Han X, Wang X, Tian H, Rauf A, Yan J, Zhang H, Li X. Construction of piezoelectric, conductive and injectable hydrogels to promote wound healing through electrical stimulation. Acta Biomater 2025; 191:205-215. [PMID: 39577481 DOI: 10.1016/j.actbio.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Piezoelectric, conductive, and injectable hydrogel (SPG hydrogel) is constructed to rapidly close wounds, efficiently harvest biomechanical energy from animal motion, and generate electrical stimulation for electrotherapy of wound healing. 3-amino-4-methoxybenzoic acid (AMB) monomer was polymerized and grafted onto the gelatin, which was further crosslinked using EDC/NHS and embedded with strontium titanate nanoparticles (80.5 wt%), forming SPG hydrogel. This SPG hydrogel had high tissue adhesion ability, and could generate the output voltage (maximum output voltage 1 V) and current (maximum output current 0.5 nA) upon mechanical bending, promoting NIH-3T3 cell migration and proliferation. Upon application to the mice wound model, the SPG hydrogel rapidly closed the skin wound, smoothed the wound's appearance, reduced the remaining wound size, and increased epidermal thickness, demonstrating remarkable wound healing capabilities. This study suggests that the body motion-promoted electrotherapy offers a promising strategy for wound healing. STATEMENT OF SIGNIFICANCE: Piezoelectric nanomaterials are often incorporated into hydrogels to create piezoelectric hydrogels for wound healing. However, piezoelectric nanomaterials tend to agglomerate within the hydrogel matrix, and the hydrogel's low conductivity hinders efficient electron transfer. Together, both factors significantly reduce the piezoelectric effect. In this study, we developed an SPG hydrogel to improve the homogeneity and conductivity of the piezoelectric hydrogel. We first designed a conductive PG hydrogel and then immoblized piezoelectric STO nanoparticles within its matrix through coordination chemistry. Upon mechanical deformation, the uniformly distributed STO nanoparticles can generate electricity, which can efficiently transfer through the conductive matrix to the hydrogel's surface. This design shows great potential for wound healing applications.
Collapse
Affiliation(s)
- Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China; Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Yanjing Wang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Weili Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Diyi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Panpan Song
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yaqing Kang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Xinbo Wang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Ambar, Khyber Pakhtunkhwa 23430, Pakistan
| | - Jiao Yan
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Haiyuan Zhang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
6
|
Wang Z, Li M, Chen J, Zhang S, Wang B, Wang J. Immunomodulatory Hydrogel for Electrostatically Capturing Pro-inflammatory Factors and Chemically Scavenging Reactive Oxygen Species in Chronic Diabetic Wound Remodeling. Adv Healthc Mater 2024; 13:e2402080. [PMID: 39380409 DOI: 10.1002/adhm.202402080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Indexed: 10/10/2024]
Abstract
Diabetic wound exhibits the complex characteristics involving continuous oxidative stress and excessive expression of pro-inflammatory cytokines to cause a long-term inflammatory microenvironment. The repair healing of chronic diabetic wounding is tremendously hindered due to persistent inflammatory reaction. To address the aforementioned issues, here, a dual-functional hydrogel is designed, consisting of N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-tetramethylpropane-1, 3-diaminium (TSPBA) modified polyvinyl alcohol (PVA) and methacrylamide carboxymethyl chitosan (CMCSMA) can not only electrostatically adsorb proinflammatory cytokines of IL1-β and TNF-α, but can also chemically scavenge the excessive reactive oxygen species (ROS) in situ. Both in vitro and in vivo evaluations verify that the negatively charged and ROS-responsive hydrogel (NCRH) can effectively modulate the chronic inflammatory microenvironment of diabetic wounds and significantly enhance wound remodeling. More importantly, the well-designed NCRH shows a superior skin recovery in comparison with the commercial competitor product of wound dressing. Consequently, the current work highlights the need for new strategies to expedite the healing process of diabetic wounds and offers a wound dressing material with immunomodulation.
Collapse
Affiliation(s)
- Zihao Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Mengyu Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jia Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Jianglin Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| |
Collapse
|
7
|
He X, Peng L, Zhou L, Liu H, Hao Y, Li Y, Lv Z, Zeng B, Guo X, Guo R. A biphasic drug-releasing microneedle with ROS scavenging and angiogenesis for the treatment of diabetic ulcers. Acta Biomater 2024; 189:270-285. [PMID: 39362454 DOI: 10.1016/j.actbio.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Diabetic ulcers are one of the common complications in diabetic patients. Delayed wound healing is associated with persistent pro-inflammatory M1 polarization, reduced angiogenesis and increased reactive oxygen species (ROS) in the microenvironment. Wound healing consists of multiple phases and therefore requires treatment tailored to each phase. In this study, a biphasic drug-releasing microneedle (MN) was fabricated to achieve early ROS scavenging and late accelerated angiogenesis to promote wound healing. Vascular endothelial growth factor (VEGF) was first encapsulated in methacryloylated sulfonated chitosan (SCSMA) microspheres (V@MP), and then V@MP was loaded into hyaluronic acid (HA) microneedles along with cerium dioxide nanoparticles (CONPs). Rapid dissolution of HA rapidly releases the CONPs to clear ROS, whereas the V@MP stays in the wound. SCSMA slow degradation prolongs the release of VEGF, thereby promoting angiogenesis. In vitro and in vivo studies have shown that this biphasic drug-releasing smart microneedle improves cell proliferation and migration, effectively scavenges ROS, promotes angiogenesis and tissue regeneration, and synergistically promotes M2 macrophage polarization. It provides a new delivery mode for nano-enzymes and growth factors that could be multifunctional and synergistic in the treatment of diabetic ulcers. STATEMENT OF SIGNIFICANCE: In our study, we present a microneedle (V@MP/C@MN) that can release drugs biphasically, which showed good repair ability in diabetic ulcer model. Large amounts of CONPs were rapidly released to alleviate oxidative stress during the inflammation of the wound, and V@MP stayed in the wound for a long period of time to release VEGF and promote angiogenesis in the late stage of wound healing. The results indicated that V@MP/C@MN could promote cell proliferation and migration, effectively scavenge ROS, promote angiogenesis and tissue regeneration, and synergistically promote M2 macrophage polarization, which could play a multifunctional and synergistic role in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Xinyue He
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Lianghong Peng
- Department of Ophthalmology, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Liming Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Huiling Liu
- Head Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre, Amsterdam, De Boelelaan 1117, the Netherlands
| | - Yifan Hao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuhan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zijin Lv
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Baohui Zeng
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China.
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Saravanakumar I, Thangavel P, Muthuvijayan V. l-Arginine-Loaded Oxidized Isabgol/Chitosan-Based Biomimetic Composite Scaffold Accelerates Collagen Synthesis, Vascularization, and Re-epithelialization during Wound Healing in Diabetic Rats. ACS APPLIED BIO MATERIALS 2024; 7:6162-6174. [PMID: 39152909 DOI: 10.1021/acsabm.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Impaired wound healing in diabetic wounds is common due to infection, inflammation, less collagen synthesis, and vascularization. Diabetic wound healing in patients is still a challenge and needs an ideal wound dressing to treat and manage diabetic wounds. Herein, an efficacious wound dressing biomaterial was fabricated by cross-linking oxidized isabgol (Oisab) and chitosan (Cs) via trisodium trimetaphosphate and Schiff base bonds. l-Arginine (l-Arg) was incorporated as a bioactive substance in the Oisab + Cs scaffold to promote cell adhesion, cell proliferation, collagen synthesis, and vascularization. The fabricated scaffolds showed microporous networks in the scanning electron microscopy analysis. The scaffold also possessed excellent hemocompatibility. In vitro studies using fibroblasts (L929 and human dermal fibroblast cells) confirmed the cytocompatibility of these scaffolds. The results of the in vivo chicken chorioallantoic membrane assay confirmed the proangiogenic activity of the Oisab + Cs + l-Arg scaffolds. The wound-healing potential of these scaffolds was studied in streptozotocin-induced diabetic rats. This in vivo study showed that the period of epithelialization in the Oisab + Cs + l-Arg scaffold-treated wounds was 21.67 ± 1.6 days, which was significantly faster than the control (30.33 ± 2.5 days). Histological and immunohistochemical studies showed that the Oisab + Cs + l-Arg scaffolds significantly accelerated the rate of wound contraction by reducing inflammation, improving collagen synthesis, and promoting neovascularization. These findings suggest that the Oisab + Cs + l-Arg scaffolds could be beneficial in treating diabetic wounds in clinical applications.
Collapse
Affiliation(s)
- Iniyan Saravanakumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ponrasu Thangavel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
9
|
Ma S, Chen K, Ding Q, Zhang S, Lu Y, Yu T, Ding C, Liu W, Liu S. Quaternized oxidized sodium alginate injectable hydrogel with high antimicrobial and hemostatic efficacy promotes diabetic wound healing. Int J Pharm 2024; 661:124421. [PMID: 38972524 DOI: 10.1016/j.ijpharm.2024.124421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
In this paper, a hydrogel material with efficient antibacterial, hemostatic, self-healing, and injectable properties was designed for the treatment of diabetic wounds. Firstly, quaternary ammonium salts were grafted with oxidized sodium alginate, and quaternized oxidized sodium alginate (QOSA) was synthesized. Due to the introduction of quaternary ammonium group it has antibacterial and hemostatic effects, at the same time, due to the presence of aldehyde group it can be reacted with carboxymethyl chitosan (CMCS) to form a hydrogel through the Schiff base reaction. Furthermore, deer antler blood polypeptide (DABP) was loaded into the hydrogel (QOSA&CMCS&DABP), showing good swelling ratio and bacteriostatic effect. In vitro and in vivo experiments demonstrated that the hydrogel not only quickly inhibited hepatic hemorrhage in mice and reduced coagulation index and clotting time in vitro, but also significantly enhanced collagen deposition at the wound site, accelerating wound healing. This demonstrates that the multifunctional hydrogel materials (QOSA&CMCS&DABP) have promising applications in the acceleration of skin wound healing and antibacterial promotion.
Collapse
Affiliation(s)
- Shuang Ma
- School of Food and Pharmaceutical Engineering, Liupao Tea Modern Industry College, Wuzhou University, Wuzhou 543002, China
| | - Kecheng Chen
- Looking Up Starry Sky Medical Research Center, Siping 136001, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yang Lu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Taojing Yu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Liupao Tea Modern Industry College, Wuzhou University, Wuzhou 543002, China.
| | - Shuang Liu
- Jilin Jin Ziyuan Biotech Inc. Shuangliao 136400, Chian.
| |
Collapse
|
10
|
Bakadia BM, Zheng R, Qaed Ahmed AA, Shi Z, Babidi BL, Sun T, Li Y, Yang G. Teicoplanin-Decorated Reduced Graphene Oxide Incorporated Silk Protein Hybrid Hydrogel for Accelerating Infectious Diabetic Wound Healing and Preventing Diabetic Foot Osteomyelitis. Adv Healthc Mater 2024; 13:e2304572. [PMID: 38656754 DOI: 10.1002/adhm.202304572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Developing hybrid hydrogel dressings with anti-inflammatory, antioxidant, angiogenetic, and antibiofilm activities with higher bone tissue penetrability to accelerate diabetic wound healing and prevent diabetic foot osteomyelitis (DFO) is highly desirable in managing diabetic wounds. Herein, the glycopeptide teicoplanin is used for the first time as a green reductant to chemically reduce graphene oxide (GO). The resulting teicoplanin-decorated reduced graphene oxide (rGO) is incorporated into a mixture of silk proteins (SP) and crosslinked with genipin to yield a physicochemically crosslinked rGO-SP hybrid hydrogel. This hybrid hydrogel exhibits high porosity, self-healing, shear-induced thinning, increased cell proliferation and migration, and mechanical properties suitable for tissue engineering. Moreover, the hybrid hydrogel eradicates bacterial biofilms with a high penetrability index in agar and hydroxyapatite disks covered with biofilms, mimicking bone tissue. In vivo, the hybrid hydrogel accelerates the healing of noninfected wounds in a diabetic rat and infected wounds in a diabetic mouse by upregulating anti-inflammatory cytokines and downregulating matrix metalloproteinase-9, promoting M2 macrophage polarization and angiogenesis. The implantation of hybrid hydrogel into the infected site of mouse tibia improves bone regeneration. Hence, the rGO-SP hybrid hydrogel can be a promising wound dressing for treating infectious diabetic wounds, providing a further advantage in preventing DFO.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, 27100, Italy
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bakamona Lyna Babidi
- Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, 4748, Democratic Republic of the Congo
| | - Tun Sun
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
12
|
Umesh, Chandran VC, Saha P, Nath D, Bera S, Bhattacharya S, Pal A. A hydrogel based on Fe(II)-GMP demonstrates tunable emission, self-healing mechanical strength and Fenton chemistry-mediated notable antibacterial properties. NANOSCALE 2024; 16:13050-13060. [PMID: 38899974 DOI: 10.1039/d4nr01011f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Supramolecular hydrogels serve as an excellent platform to enable in situ reactive oxygen species (ROS) generation while maintaining controlled localized conditions, thereby mitigating cytotoxicity. Herein, we demonstrate hydrogel formation using guanosine-5'-monophosphate (GMP) with tetra(4-carboxylphenyl) ethylene (1) to exhibit aggregation-induced emission (AIE) and tunable mechanical strength in the presence of divalent metal ions such as Ca2+, Mg2+, and Fe2+. The addition of divalent metal ions leads to structural transformation in the metallogels (M-1GMP). Furthermore, the incorporation of Fe2+ ions into the hydrogel (Fe-1GMP) promotes the Fenton reaction that could be upregulated upon adding ascorbic acid (AA), demonstrating antibacterial efficacy via ROS generation. In vitro studies on AA-loaded Fe-1GMP demonstrate excellent bacterial killing efficacy against E. coli, S. aureus and vancomycin-resistant enterococci (VRE) strains. Finally, in vivo studies involving topical administration of Fe-1GMP to Balb/c mice with skin infections further suggest the potential antibacterial efficacy of the hydrogel. Taken together, the hydrogel with its unique combination of mechanical tunability, ROS generation capability and antibacterial efficacy can be used for biomedical applications, particularly in wound healing and infection control.
Collapse
Affiliation(s)
- Umesh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Vysakh C Chandran
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Pranay Saha
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| | - Debasish Nath
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Sayan Bera
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Yerpedu Mandal, Tirupati District, Andhra Pradesh, 517619, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
13
|
Sun M, Tian Y, Liu J, Yan Y, Zhang X, Xiao C, Jiang R. Proanthocyanidins-based tandem dynamic covalent cross-linking hydrogel for diabetic wound healing. Int J Biol Macromol 2024; 272:132741. [PMID: 38825292 DOI: 10.1016/j.ijbiomac.2024.132741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Wound healing in diabetic patients presents significant challenges in clinical wound care due to high oxidative stress, excessive inflammation, and a microenvironment prone to infection. In this study, we successfully developed a multifunctional tandem dynamic covalently cross-linked hydrogel dressing aimed at diabetic wound healing. This hydrogel was constructed using cyanoacetic acid functionalized dextran (Dex-CA), 2-formylbenzoylboric acid (2-FPBA) and natural oligomeric proanthocyanidins (OPC), catalyzed by histidine. The resulting Dex-CA/OPC/2-FPBA (DPOPC) hydrogel can be dissolved triggered by cysteine, thereby achieving "controllable and non-irritating" dressing change. Furthermore, the incorporation of OPC as a hydrogel building block endowed the hydrogel with antioxidant and anti-inflammatory properties. The cross-linked network of the DPOPC hydrogel circumvents the burst release of OPC, enhancing its biosafety. In vivo studies demonstrated that the DPOPC hydrogel significantly accelerated the wound healing process in diabetic mice compared to a commercial hydrogel, achieving an impressive wound closure rate of 98 % by day 14. The DPOPC hydrogel effectively balanced the disrupted inflammatory state during the healing process. This dynamic hydrogel based on natural polyphenols is expected to be an ideal candidate for dressings intended for chronic wounds.
Collapse
Affiliation(s)
- Minghui Sun
- Department of Dermatology China-Japan Union Hospital of Jilin University, Changchun 130033, PR China; Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yongchang Tian
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Jiaying Liu
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Yan
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Rihua Jiang
- Department of Dermatology China-Japan Union Hospital of Jilin University, Changchun 130033, PR China.
| |
Collapse
|
14
|
Sharma A, Dheer D, Puri V, Alsayari A, Wahab S, Kesharwani P. Insights of biopolymeric blended formulations for diabetic wound healing. Int J Pharm 2024; 656:124099. [PMID: 38614431 DOI: 10.1016/j.ijpharm.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Diabetic wounds (DWs) pose a significant health burden worldwide, with their management presenting numerous challenges. Biopolymeric formulations have recently gained attention as promising therapeutic approaches for diabetic wound healing. These formulations, composed of biocompatible and biodegradable polymers, offer unique properties such as controlled drug release, enhanced wound closure, and reduced scarring. In this review, we aim to provide a comprehensive overview of the current state of research and future prospects regarding the application of biopolymeric formulations for diabetic wound healing. The review begins by highlighting the underlying pathophysiology of DWs, including impaired angiogenesis, chronic inflammation, and compromised extracellular matrix (ECM) formation. It further explores the key characteristics of biopolymeric materials, such as their biocompatibility, biodegradability, and tunable physicochemical properties, which make them suitable for diabetic wound healing applications. The discussion further delves into the types of biopolymeric formulations utilized in the treatment of DWs. These include hydrogels, nanoparticles (NP), scaffolds, films, and dressings. Furthermore, the review addresses the challenges associated with biopolymeric formulations for diabetic wound healing. In conclusion, biopolymeric formulations present a promising avenue for diabetic wound healing. Their unique properties and versatility allow for tailored approaches to address the specific challenges associated with DWs. However, further research and developments are required to optimize their therapeutic efficacy, stability, manufacturing processes, and regulatory considerations. With continued advancements in biopolymeric formulations, the future holds great promise for improving the management and outcomes of DWs.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India; Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India.
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
15
|
Oprita EI, Iosageanu A, Craciunescu O. Natural Polymeric Hydrogels Encapsulating Small Molecules for Diabetic Wound Healing. Gels 2023; 9:867. [PMID: 37998956 PMCID: PMC10671021 DOI: 10.3390/gels9110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Diabetes is a condition correlated with a high number of diagnosed chronic wounds as a result of a complex pathophysiological mechanism. Diabetic chronic wounds are characterized by disorganized and longer stages, compared to normal wound healing. Natural polymer hydrogels can act as good wound dressings due to their versatile physicochemical properties, represented mainly by high water content and good biocompatibility. Natural bioactive hydrogels are polymers loaded with bioactive compounds providing antibacterial and antioxidant properties, modulation of inflammation and adherence to wounded tissue, compared to traditional dressings, which enables promising future applications for diabetic wound healing. Natural bioactive compounds, such as polyphenols, polysaccharides and proteins have great advantages in promoting chronic wound healing in diabetes due to their antioxidant, anti-inflammatory, antimicrobial, anti-allergic and wound healing properties. The present paper aims to review the wound healing mechanisms underlining the main issues of chronic wounds and those specifically occurring in diabetes. Also, the review highlights the recent state of the art related to the effect of hydrogels enriched with natural bioactive compounds developed as biocompatible functional materials for improving diabetic-related chronic wound healing and providing novel therapeutic strategies that could prevent limb amputation and increase the quality of life in diabetic patients.
Collapse
Grants
- Program Nucleu, project no. 23020101/2023 Ministry of Research, Innovation and Digitalization, Romania
- Program 1, Development of the National R&D System, Subprogram 1.2, Institutional Performance, Projects for Excellence Financing in RDI, contract no. 2PFE/2021. Ministry of Research, Innovation and Digitalization, Romania
Collapse
Affiliation(s)
- Elena Iulia Oprita
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (O.C.)
| | | | | |
Collapse
|
16
|
Zhou J, Li T, Zhang M, Han B, Xia T, Ni S, Liu Z, Chen Z, Tian X. Thermosensitive black phosphorus hydrogel loaded with silver sulfadiazine promotes skin wound healing. J Nanobiotechnology 2023; 21:330. [PMID: 37715259 PMCID: PMC10503145 DOI: 10.1186/s12951-023-02054-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/07/2023] [Indexed: 09/17/2023] Open
Abstract
Wounds can lead to skin and soft tissue damage and their improper management may lead to the growth of pathogenic bacteria at the site of injury. Identifying better ways to promote wound healing is a major unmet need and biomedical materials with the ability to promote wound healing are urgently needed. Here, we report a thermosensitive black phosphorus hydrogel composed of black phosphorus nano-loaded drug silver sulfadiazine (SSD) and chitosan thermosensitive hydrogel for wound healing. The hydrogel has temperature-sensitive properties and enables the continuous release of SSD under near-infrared irradiation to achieve synergistic photothermal and antibacterial treatment. Additionally, it exerts antibacterial effects on Staphylococcus aureus. In a rat skin injury model, it promotes collagen deposition, boosts neovascularization, and suppresses inflammatory markers. In summary, the excellent thermosensitivity, biocompatibility, and wound-healing-promoting qualities of the reported thermosensitive hydrogel make it suitable as an ideal wound dressing in the clinic.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Tianjiao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Meili Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Tao Xia
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi, 830032, China
| | - Shuangshuang Ni
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi, 830032, China
| | - Zhiyong Liu
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Zhenyang Chen
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi, 830032, China.
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi, 830032, China.
| |
Collapse
|
17
|
Li K, Zhu Z, Zhai Y, Chen S. Recent Advances in Electrospun Nanofiber-Based Strategies for Diabetic Wound Healing Application. Pharmaceutics 2023; 15:2285. [PMID: 37765254 PMCID: PMC10535965 DOI: 10.3390/pharmaceutics15092285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetic ulcers are the second largest complication caused by diabetes mellitus. A great number of factors, including hyperchromic inflammation, susceptible microbial infection, inferior vascularization, the large accumulation of free radicals, and other poor healing-promoting microenvironments hold back the healing process of chronic diabetic ulcer in clinics. With the increasing clinical cases of diabetic ulcers worldwide, the design and development of advanced wound dressings are urgently required to accelerate the treatment of skin wounds caused by diabetic complications. Electrospinning technology has been recognized as a simple, versatile, and cost-reasonable strategy to fabricate dressing materials composed of nanofibers, which possess excellent extracellular matrix (ECM)-mimicking morphology, structure, and biological functions. The electrospinning-based nanofibrous dressings have been widely demonstrated to promote the adhesion, migration, and proliferation of dermal fibroblasts, and further accelerate the wound healing process compared with some other dressing types like traditional cotton gauze and medical sponges, etc. Moreover, the electrospun nanofibers are commonly harvested in the structure of nonwoven-like mats, which possess small pore sizes but high porosity, resulting in great microbial barrier performance as well as excellent moisture and air permeable properties. They also serve as good carriers to load various bioactive agents and/or even living cells, which further impart the electrospinning-based dressings with predetermined biological functions and even multiple functions to significantly improve the healing outcomes of different chronic skin wounds while dramatically shortening the treatment procedure. All these outstanding characteristics have made electrospun nanofibrous dressings one of the most promising dressing candidates for the treatment of chronic diabetic ulcers. This review starts with a brief introduction to diabetic ulcer and the electrospinning process, and then provides a detailed introduction to recent advances in electrospinning-based strategies for the treatment of diabetic wounds. Importantly, the synergetic application of combining electrospinning with bioactive ingredients and/or cell therapy was highlighted. The review also discussed the advantages of hydrogel dressings by using electrospun nanofibers. At the end of the review, the challenge and prospects of electrospinning-based strategies for the treatment of diabetic wounds are discussed in depth.
Collapse
Affiliation(s)
- Kun Li
- College of Textile & Clothing, Qingdao University, Qingdao 266071, China;
| | - Zhijun Zhu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China; (Z.Z.); (Y.Z.)
| | - Yanling Zhai
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China; (Z.Z.); (Y.Z.)
| | - Shaojuan Chen
- College of Textile & Clothing, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
18
|
Nirenjen S, Narayanan J, Tamilanban T, Subramaniyan V, Chitra V, Fuloria NK, Wong LS, Ramachawolran G, Sekar M, Gupta G, Fuloria S, Chinni S, Selvaraj S. Exploring the contribution of pro-inflammatory cytokines to impaired wound healing in diabetes. Front Immunol 2023; 14:1216321. [PMID: 37575261 PMCID: PMC10414543 DOI: 10.3389/fimmu.2023.1216321] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Impaired wound healing is the most common and significant complication of Diabetes. While most other complications of Diabetes have better treatment options, diabetic wounds remain a burden as they can cause pain and suffering in patients. Wound closure and repair are orchestrated by a sequence of events aided by the release of pro-inflammatory cytokines, which are dysregulated in cases of Diabetes, making the wound environment unfavorable for healing and delaying the wound healing processes. This concise review provides an overview of the dysregulation of pro-inflammatory cytokines and offers insights into better therapeutic outcomes. PURPOSE OF REVIEW Although many therapeutic approaches have been lined up nowadays to treat Diabetes, there are no proper treatment modalities proposed yet in treating diabetic wounds due to the lack of understanding about the role of inflammatory mediators, especially Pro-inflammatory mediators- Cytokines, in the process of Wound healing which we mainly focus on this review. RECENT FINDINGS Although complications of Diabetes mellitus are most reported after years of diagnosis, the most severe critical complication is impaired Wound Healing among Diabetes patients. Even though Trauma, Peripheral Artery Disease, and Peripheral Neuropathy are the leading triggering factors for the development of ulcerations, the most significant issue contributing to the development of complicated cutaneous wounds is wound healing impairment. It may even end up with amputation. Newer therapeutic approaches such as incorporating the additives in the present dressing materials, which include antimicrobial molecules and immunomodulatory cytokines is of better therapeutic value. SUMMARY The adoption of these technologies and the establishment of novel therapeutic interventions is difficult since there is a gap in terms of a complete understanding of the pathophysiological mechanisms at the cellular and molecular level and the lack of data in terms of the assessment of safety and bioavailability differences in the individuals' patients. The target-specific pro-inflammatory cytokines-based therapies, either by upregulation or downregulation of them, will be helpful in the wound healing process and thereby enhances the Quality of life in patients, which is the goal of drug therapy.
Collapse
Affiliation(s)
- S. Nirenjen
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - J. Narayanan
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - T. Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - V. Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, Jalan Sepoy Lines, Georgetown, Pulau Pinang, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | |
Collapse
|
19
|
Priyadarsini SL, Suresh M, Nikhila G. Assessment framework for the selection of a potential interactive dressing material for diabetic foot ulcer. Heliyon 2023; 9:e16476. [PMID: 37292346 PMCID: PMC10245162 DOI: 10.1016/j.heliyon.2023.e16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Diabetic foot ulcer is a chronic health issue leading to lower leg amputations in approximately 15% of patients with diabetics. There are many factors directly or indirectly involved in the physiology of wound healing but being a multisystem disorder, wound healing in diabetic patients retard or worsen with heavy exudates and severe microbial infections. Wound management is of prime importance and is an emerging area to incorporate wound regenerative materials in natural or synthetic dressing materials along with proper microbial control. The article aim to identify suitable dressing materials which exhibit inherent wound healing properties at the same time flexible to be used as drug carriers for slow, consistent and effective delivery of 'functional drugs' to the wound environment. The authors selected nine materials from the popular and well accepted dressings of patient choice, analyzed them using graph theoretic approach and ranked them on the basis of graph index values obtained. A critical review has also been done on the basis of their ranking, providing insights to the advantages, disadvantage and potential of top 5 ranked candidate materials. Alginate, Honey, Medifoam, Saline, and Hydrogel dressings were the top five candidate materials ranked respectively, even then, the authors suggests that 'modified hydrogels' can have the potential to be used as a future candidate in DFU treatment as it is the only material (among the top ranked ones) which can effectively used as regenerative drug carrier, while providing all other wound healing properties in relative proportions. The proposed framework can be modified and applied in the selection and ranking of materials for any kind of applications both in industry and medical fields by identifying factors influencing the final outcome of study and by listing the characteristics of the materials selected.
Collapse
Affiliation(s)
| | - M. Suresh
- Amrita School of Business, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
| | - G. Nikhila
- Government Victoria College, University of Calicut, Palakkad, 678001, Kerala, India
| |
Collapse
|
20
|
Kido HW, Gabbai-Armelin PR, Magri A, Fernandes KR, Cruz MA, Santana AF, Caliari HM, Parisi JR, Avanzi IR, Daguano J, Granito RN, Fortulan CA, Rennó A. Bioglass/collagen scaffolds combined with bone marrow stromal cells on bone healing in an experimental model in cranial defects in rats. J Biomater Appl 2023; 37:1632-1644. [PMID: 36916869 DOI: 10.1177/08853282231163752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This study aimed to develop bone regenerative therapeutic strategies, based on the addition of bone marrow stromal cells (BMSC) on bioglass/collagen (BG/COL) scaffolds. For this purpose, an in vivo study was conducted using tissue response of the BG/COL scaffolds combined with BMSC in a critical-size defects. Wistar rats were submitted to the surgical procedure to perform the cranial critical size bone defects and distributed in four groups (20 animals per group): Control Group (CG) (rats submitted to the cranial bone defect surgery without treatment), Bioglass Group (BG) (rats treated with BG), BG/COL Group (rats treated with BG/COL) and Bioglass/Collagen and BMSC Group (BG/COL/BMSC) (rats treated with BG/COL scaffolds enriched with BMSCs). Animals were euthanized 15 and 30 days after surgery. Scanning electron microscopy, histopathological and immunohistochemistry analysis were used. SEM analysis demonstrated that porous scaffolds were obtained, and Col fibers were successfully impregnated to BG matrices. The implantation of the BMSC on BG/COL based scaffolds was effective in stimulating newly bone formation and produced an increased immunoexpression of markers related to the bone repair. These results highlight the potential of BG/COL scaffolds and BMSCs to be used as a therapeutic approach for bone regeneration.
Collapse
Affiliation(s)
- H W Kido
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil.,Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - P R Gabbai-Armelin
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Amp Magri
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil.,University Center of the Guaxupé Educational Foundation (UNIFEG), Guaxupé, Brazil
| | - K R Fernandes
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - M A Cruz
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - A F Santana
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - H M Caliari
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - J R Parisi
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - I R Avanzi
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Jkmb Daguano
- Center for Engineering, Modeling and Applied Social Sciences, 74362Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - R N Granito
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - C A Fortulan
- Department of Mechanical Engineering, 28133University of São Paulo (USP) São Carlos, São Carlos, Brazil
| | - Acm Rennó
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|