1
|
Guo F, Hao L, Feng L, Hu B, Niu J, Zhang X, Chen S, Liu B. A review of electrospun metal oxide semiconductor-based photocatalysts. iScience 2025; 28:111675. [PMID: 39868036 PMCID: PMC11761326 DOI: 10.1016/j.isci.2024.111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
In recent years, photocatalytic materials with a nanofiber-like morphology have garnered a surge of academic attention due to their distinctive properties, including an expansive specific surface area, a considerable high aspect ratio, a pronounced resistance to agglomeration, superior electron survivability, and robust surface activity. Consequently, the synthesis of photocatalytic nanofiber materials through various methodologies has drawn considerable attention. The electrospinning technique has been established as a prevalent method for fabricating nanofiber-structured materials, owing to its advantageous properties, including the ability for mass production and the assurance of high continuity. This review focuses on metal oxide semiconductor-based materials, which are crucial components of photocatalysts. We summarize several recent studies that explore morphology modulation, surface modification, element doping, and composite construction using uniaxial and coaxial electrospinning techniques. Finally, we present potential approaches for constructing high-activity photocatalytic systems through electrospinning technique.
Collapse
Affiliation(s)
- Fushui Guo
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Liantao Hao
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Liu Feng
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Bingjie Hu
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Jinye Niu
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Xuliang Zhang
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Shuangying Chen
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| |
Collapse
|
2
|
Popović M, Morović S, Kovačić M, Košutić K. Pharmaceutical Removal with Photocatalytically Active Nanocomposite Membranes. MEMBRANES 2024; 14:239. [PMID: 39590625 PMCID: PMC11596311 DOI: 10.3390/membranes14110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
The advancement of pharmaceutical science has resulted in the development of numerous tailor-made compounds, i.e., pharmaceuticals, tuned for specific drug targets. These compounds are often characterized by their low biodegradability and are commonly excreted to a certain extent unchanged from the human body. Due to their low biodegradability, these compounds represent a significant challenge to wastewater treatment plants. Often, these compounds end up in effluents in the environment. With the advancement of membrane technologies and advanced oxidation processes, photocatalysis in particular, a synergistic approach between the two was recognized and embraced. These hybrid advanced water treatment processes are the focus of this review, specifically the removal of pharmaceuticals from water using a combination of a photocatalyst and pressure membrane process, such as reverse osmosis or nanofiltration employing photocatalytic nanocomposite membranes.
Collapse
Affiliation(s)
- Marin Popović
- Department of Safety and Protection, Karlovac University of Applied Sciences, Trg Josipa Juraja Strossmayera 9, HR-47000 Karlovac, Croatia
| | - Silvia Morović
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia;
| | - Marin Kovačić
- Department of Polymer Engineering and Organic Chemical Technology, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia;
| | - Krešimir Košutić
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Dong S, Maciejewska BM, Schofield RM, Hawkins N, Siviour CR, Grobert N. Electrospinning Nonspinnable Sols to Ceramic Fibers and Springs. ACS NANO 2024; 18:13538-13550. [PMID: 38717374 PMCID: PMC11140837 DOI: 10.1021/acsnano.3c12659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Electrospinning has been applied to produce ceramic fibers using sol gel-based spinning solutions consisting of ceramic precursors, a solvent, and a polymer to control the viscosity of the solution. However, the addition of polymers to the spinning solution makes the process more complex, increases the processing time, and results in porous mechanically weak ceramic fibers. Herein, we develop a coelectrospinning technique, where a nonspinnable sol (<10 mPa s) consisting of only the ceramic precursor(s) and solvent(s) is encapsulated inside a polymeric shell, forming core-shell precursor fibers that are further calcined into ceramic fibers with reduced porosity, decreased surface defects, uniform crystal packing, and controlled diameters. We demonstrate the versatility of this method by applying it to a series of nonspinnable sols and creating high-quality ceramic fibers containing TiO2, ZrO2, SiO2, and Al2O3. The polycrystalline TiO2 fibers possess excellent flexibility and a high Young's modulus reaching 54.3 MPa, solving the extreme brittleness problem of the previously reported TiO2 fibers. The single-component ZrO2 fibers exhibit a Young's modulus and toughness of 130.5 MPa and 11.9 KJ/m3, respectively, significantly superior to the counterparts prepared by conventional sol-gel electrospinning. We also report the creation of ceramic fibers in micro- and nanospring morphologies and examine the formation mechanisms using thermomechanical simulations. The fiber assemblies constructed by the helical fibers exhibit a density-normalized toughness of 3.5-5 times that of the straight fibers due to improved fracture strain. This work expands the selection of the electrospinning solution and enables the development of ceramic fibers with more attractive properties.
Collapse
Affiliation(s)
- Shiling Dong
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | | | - Ryan M. Schofield
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Nicholas Hawkins
- Department
of Engineering, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| | - Clive R. Siviour
- Department
of Engineering, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| | - Nicole Grobert
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| |
Collapse
|
4
|
Bachvarova-Nedelcheva A, Iordanova R, Stoyanova A, Georgieva N, Nemska V, Foteva T. Effect of B 2O 3 on the Structure, Properties and Antibacterial Abilities of Sol-Gel-Derived TiO 2/TeO 2/B 2O 3 Powders. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6400. [PMID: 37834537 PMCID: PMC10573519 DOI: 10.3390/ma16196400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023]
Abstract
This paper studies the influence of B2O3 on the structure, properties and antibacterial abilities of sol-gel-derived TiO2/TeO2/B2O3 powders. Titanium(IV) butoxide, telluric(VI) acid and boric acid were used as precursors. Differences were observed in the degree of decomposition of Ti butoxide in the presence of H3BO3 and H6TeO6 acids. The phase transformations of the obtained gels in the temperature range of 200-700 °C were investigated by XRD. Composite materials containing an amorphous phase and different crystalline phases (metallic Te, α-TeO2, anatase, rutile and TiTe3O8) were prepared. Heating at 400 °C indicated a crystalline-to-amorphous-phase ratio of approximately 3:1. The scanning electron microscopy (SEM) analysis showed the preparation of plate-like TiO2 nanoparticles. The IR results showed that the short-range order of the amorphous phases that are part of the composite materials consists of TiO6, BO3, BO4 and TeO4 structural units. Free B2O3 was not detected in the investigated compositions which could be related to the better connectivity between the building units as compared to binary TiO2/B2O3 compositions. The UV-Vis spectra of the investigated gels exhibited a red shift of the cut-off due to the presence of boron and tellurium units. The binary sample achieved the maximum photodegradation efficiency (94%) toward Malachite green dye under UV irradiation, whereas the ternary sample photoactivity was very low. The compositions exhibited promising antibacterial activity against E. coli NBIMCC K12 407.
Collapse
Affiliation(s)
- Albena Bachvarova-Nedelcheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bld. 11, 1113 Sofia, Bulgaria;
| | - Reni Iordanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bld. 11, 1113 Sofia, Bulgaria;
| | - Angelina Stoyanova
- Department Chemistry and Biochemistry, Faculty of Pharmacy, Medical University—Pleven, Kl. Ohridski Str., 1, 5800 Pleven, Bulgaria;
| | - Nelly Georgieva
- Department Biotechnology, Faculty of Chemical and Systems Engineering, University of Chemical Technology and Metallurgy, Kl. Ohridski Blvd, 8, 1756 Sofia, Bulgaria; (N.G.); (V.N.); (T.F.)
| | - Veronica Nemska
- Department Biotechnology, Faculty of Chemical and Systems Engineering, University of Chemical Technology and Metallurgy, Kl. Ohridski Blvd, 8, 1756 Sofia, Bulgaria; (N.G.); (V.N.); (T.F.)
| | - Tsvetelina Foteva
- Department Biotechnology, Faculty of Chemical and Systems Engineering, University of Chemical Technology and Metallurgy, Kl. Ohridski Blvd, 8, 1756 Sofia, Bulgaria; (N.G.); (V.N.); (T.F.)
| |
Collapse
|
5
|
Yuan Z, Jiang Z. Applications of BiOX in the Photocatalytic Reactions. Molecules 2023; 28:4400. [PMID: 37298876 PMCID: PMC10254493 DOI: 10.3390/molecules28114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BiOX (X = Cl, Br, I) families are a kind of new type of photocatalysts, which have attracted the attention of more and more researchers. The suitable band gaps and their convenient tunability via the change of X elements enable BiOX to adapt to many photocatalytic reactions. In addition, because of their characteristics of the unique layered structure and indirect bandgap semiconductor, BiOX exhibits excellent separation efficiency of photogenerated electrons and holes. Therefore, BiOX could usually demonstrate fine activity in many photocatalytic reactions. In this review, we will present the various applications and modification strategies of BiOX in photocatalytic reactions. Finally, based on a good understanding of the above issues, we will propose the future directions and feasibilities of the reasonable design of modification strategies of BiOX to obtain better photocatalytic activity toward various photocatalytic applications.
Collapse
Affiliation(s)
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|