1
|
V A S, Nayak UY, Sathyanarayana MB, Chaudhari BB, Bhat K. Formulation Strategy of BCS-II Drugs by Coupling Mechanistic In-Vitro and Nonclinical In-Vivo Data with PBPK: Fundamentals of Absorption-Dissolution to Parameterization of Modelling and Simulation. AAPS PharmSciTech 2025; 26:106. [PMID: 40244539 DOI: 10.1208/s12249-025-03093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
BCS class II candidates pose challenges in drug development due to their low solubility and permeability. Researchers have explored various techniques; co-amorphous and solid dispersion are major approaches to enhance in-vitro drug solubility and dissolution. However, in-vivo oral bioavailability remains challenging. Physiologically based pharmacokinetic (PBPK) modeling with a detailed understanding of drug absorption, distribution, metabolism, and excretion (ADME) using a mechanistic approach is emerging. This review summarizes the fundamentals of the PBPK, dissolution-absorption models, parameterization of oral absorption for BCS class II drugs, and provides information about newly emerging artificial intelligence/machine learning (AI/ML) linked PBPK approaches with their advantages, disadvantages, challenges and areas of further exploration. Additionally, the fully integrated workflow for formulation design for investigational new drugs (INDs) and virtual bioequivalence for generic molecules falling under BCS-II are discussed.
Collapse
Affiliation(s)
- Shriya V A
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Muddukrishna Badamane Sathyanarayana
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bhim Bahadur Chaudhari
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Orzel D, Ravald H, Dillon A, Rantala J, Wiedmer SK, Russo G. Immobilised artificial membrane liquid chromatography vs liposome electrokinetic capillary chromatography: Suitability in drug/bio membrane partitioning studies and effectiveness in the assessment of the passage of drugs through the respiratory mucosa. J Chromatogr A 2024; 1734:465286. [PMID: 39191185 DOI: 10.1016/j.chroma.2024.465286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
This study pioneers a comparison of the application of biomimetic techniques, immobilised artificial membrane liquid chromatography (IAM LC) and liposome electrokinetic capillary chromatography (LEKC), for the prediction of pulmonary drug permeability. The pulmonary absorption profiles of 26 structurally unrelated drug-like molecules were evaluated using their IAM hydrophobicity index (CHI IAM) measured in IAM LC, and the logarithm of distribution constants (log KLEKC) derived from the LEKC experiments. Lipophilicity (phospholipids) parameters obtained from IAM LC and most LEKC analyses were linearly related to the n-octanol/water partitioning coefficients of the neutral forms (i.e., log Po/w values) to a moderate extent. However, the relationship with distribution coefficients at the experimental pH (7.4) (i.e., log D7.4) were weaker overall for IAM LC data and sigmoidal for some liposome compositions (phosphatidyl choline (PC): phosphatidyl inositol (PI) 85:15 mol% and 90:10 mol%) and concentrations (4 mM) in LEKC. This suggests that phospholipid partitioning supports both hydrophobic and electrostatic interactions occurring between ionised drugs and charged phospholipid moieties. The latter interactions are original when compared to those taking place in the more established n-octanol/water partitioning systems. A stronger correlation (R2 > 0.65) was identified between the LEKC retention parameters, and the experimental apparent lung permeability (i.e., log Papp values) as opposed to the values obtained by IAM LC. Therefore, LEKC offers unprecedented advantages over IAM LC in simulating cell membrane partitioning processes in the pulmonary delivery of drugs. Although LEKC has the advantage of more effectively simulating the electrostatic and hydrophobic forces in drug/pulmonary membrane interactions in vitro, the technique is unsuitable for analysing highly hydrophilic neutral or anionic compounds at the experimental pH. Conversely, IAM LC is useful for analysing compounds spanning a wider range of lipophilicity. Its simpler and more robust implementation, and propensity for high-throughput automation make it a favourable choice for researchers in drug development and pharmacological studies.
Collapse
Affiliation(s)
- Dorota Orzel
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh EH11 4BN, United Kingdom
| | - Henri Ravald
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P. O. Box 55 00014, Finland
| | - Amy Dillon
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh EH11 4BN, United Kingdom
| | - Julia Rantala
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P. O. Box 55 00014, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P. O. Box 55 00014, Finland.
| | - Giacomo Russo
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh EH11 4BN, United Kingdom.
| |
Collapse
|
3
|
Visan AI, Negut I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life (Basel) 2024; 14:233. [PMID: 38398742 PMCID: PMC10890405 DOI: 10.3390/life14020233] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Drug development is expensive, time-consuming, and has a high failure rate. In recent years, artificial intelligence (AI) has emerged as a transformative tool in drug discovery, offering innovative solutions to complex challenges in the pharmaceutical industry. This manuscript covers the multifaceted role of AI in drug discovery, encompassing AI-assisted drug delivery design, the discovery of new drugs, and the development of novel AI techniques. We explore various AI methodologies, including machine learning and deep learning, and their applications in target identification, virtual screening, and drug design. This paper also discusses the historical development of AI in medicine, emphasizing its profound impact on healthcare. Furthermore, it addresses AI's role in the repositioning of existing drugs and the identification of drug combinations, underscoring its potential in revolutionizing drug delivery systems. The manuscript provides a comprehensive overview of the AI programs and platforms currently used in drug discovery, illustrating the technological advancements and future directions of this field. This study not only presents the current state of AI in drug discovery but also anticipates its future trajectory, highlighting the challenges and opportunities that lie ahead.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania;
| |
Collapse
|
4
|
Giacobbo A, Pasqualotto IF, Machado Filho RCDC, Minhalma M, Bernardes AM, de Pinho MN. Ultrafiltration and Nanofiltration for the Removal of Pharmaceutically Active Compounds from Water: The Effect of Operating Pressure on Electrostatic Solute-Membrane Interactions. MEMBRANES 2023; 13:743. [PMID: 37623804 PMCID: PMC10456375 DOI: 10.3390/membranes13080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The present work investigates nanofiltration (NF) and ultrafiltration (UF) for the removal of three widely used pharmaceutically active compounds (PhACs), namely atenolol, sulfamethoxazole, and rosuvastatin. Four membranes, two polyamide NF membranes (NF90 and NF270) and two polyethersulfone UF membranes (XT and ST), were evaluated in terms of productivity (permeate flux) and selectivity (rejection of PhACs) at pressures from 2 to 8 bar. Although the UF membranes have a much higher molecular weight cut-off (1000 and 10,000 Da), when compared to the molecular weight of the PhACs (253-482 Da), moderate rejections were observed. For UF, rejections were dependent on the molecular weight and charge of the PhACs, membrane molecular weight cut-off (MWCO), and operating pressure, demonstrating that electrostatic interactions play an important role in the removal of PhACs, especially at low operating pressures. On the other hand, both NF membranes displayed high rejections for all PhACs studied (75-98%). Hence, considering the optimal operating conditions, the NF270 membrane (MWCO = 400 Da) presented the best performance, achieving permeate fluxes of about 100 kg h-1 m-2 and rejections above 80% at a pressure of 8 bar, that is, a productivity of about twice that of the NF90 membrane (MWCO = 200 Da). Therefore, NF270 was the most suitable membrane for this application, although the tight UF membranes under low operating pressures displayed satisfactory results.
Collapse
Affiliation(s)
- Alexandre Giacobbo
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves n. 9500, Porto Alegre 91509-900, Brazil; (I.F.P.); (R.C.d.C.M.F.); (A.M.B.)
- Centre of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, 1049-001 Lisbon, Portugal;
| | - Isabella Franco Pasqualotto
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves n. 9500, Porto Alegre 91509-900, Brazil; (I.F.P.); (R.C.d.C.M.F.); (A.M.B.)
| | - Rafael Cabeleira de Coronel Machado Filho
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves n. 9500, Porto Alegre 91509-900, Brazil; (I.F.P.); (R.C.d.C.M.F.); (A.M.B.)
| | - Miguel Minhalma
- Centre of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, 1049-001 Lisbon, Portugal;
- Chemical Engineering Department, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
| | - Andréa Moura Bernardes
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves n. 9500, Porto Alegre 91509-900, Brazil; (I.F.P.); (R.C.d.C.M.F.); (A.M.B.)
| | - Maria Norberta de Pinho
- Centre of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, 1049-001 Lisbon, Portugal;
- Chemical Engineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
5
|
Ishibashi R, Matsuhisa R, Nomoto M, Chudan S, Nishikawa M, Tabuchi Y, Ikushiro S, Nagai Y, Furusawa Y. Effect of Oral Administration of Polyethylene Glycol 400 on Gut Microbiota Composition and Diet-Induced Obesity in Mice. Microorganisms 2023; 11:1882. [PMID: 37630442 PMCID: PMC10456793 DOI: 10.3390/microorganisms11081882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Polyethylene glycol (PEG) is a commonly used dispersant for oral administration of hydrophobic agents. PEG is partly absorbed in the small intestine, and the unabsorbed fraction reaches the large intestine; thus, oral administration of PEG may impact the gut microbial community. However, to the best of our knowledge, no study evaluated the effects of PEG on gut commensal bacteria. Herein, we aimed to determine whether oral administration of PEG modifies the gut microbiota. Administration of PEG400 and PEG4000 altered gut microbial diversity in a concentration-dependent manner. Taxonomic analysis revealed that Akkermansia muciniphila and particularly Parabacteroides goldsteinii were overrepresented in mice administered with 40% PEG. PEG400 administration ameliorated the high-fat diet (HFD)-induced obesity and adipose tissue inflammation. Fecal microbiome transplantation from PEG400-administered donors counteracted the HFD-induced body and epididymal adipose tissue weight gain, indicating that PEG400-associated bacteria are responsible for the anti-obesity effect. Conversely, carboxymethyl cellulose, also used as a dispersant, did not affect the abundance of these two bacterial species or HFD-induced obesity. In conclusion, we demonstrated that oral administration of a high concentration of PEG400 (40%) alters the gut microbiota composition and ameliorates HFD-induced obesity.
Collapse
Affiliation(s)
- Riko Ishibashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Rio Matsuhisa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Mio Nomoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Seita Chudan
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama 939-0398, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama 939-0398, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| |
Collapse
|