1
|
Nawaz A, Taj MB, Tasleem M, Ahmad Z, Ihsan A. Study of factors affecting cellulose derivatives composite in anticancer drug delivery: A comprehensive review. Int J Biol Macromol 2025; 310:143220. [PMID: 40250680 DOI: 10.1016/j.ijbiomac.2025.143220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/22/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The targeted distribution of therapeutic molecules in cancer cells poses several challenges for biomedical applications. Drug delivery systems (DDS) are primarily designed to target cancer cells effectively to achieve maximum therapeutic effects. Cellulose is a well-known organic molecule owing to its biodegradability, biocompatibility, low toxicity, prolonged stability, and superior loading characteristics. However, cellulose composites have faced numerous drawbacks, such as higher molecular size, non-covalent interactions, poor mechanical strength, and limited water solubility. In contrast, cellulose derivatization has enhanced drug loading and release efficiency, improved mechanical strength, and mitigated drug solubility issues. This review summarized the recent advancement in cellulose-based composites such as DDS for cancer cell treatment and discussed responsive factors. The pH, temperature, magnetic nanoparticles, solubility, porosity, mechanical strength, nanoparticle size, increased time of drug release, crosslinking efficiency, etc., are major responsive assays that influence the therapeutic potential of anticancer drugs. Furthermore, overviewed the cellulose nanoformulations in sustained anticancer drug release and successfully illustrated the synthesizing methodologies as well as challenges in efficient DDS applications. Moreover, a brief overview of the interdisciplinary industrial uses of cellulose composites, including paper, textiles, and nanotechnology, is presented. Finally, cellulose-based composites provide a novel way of producing excellent DDS with enhanced therapeutic properties.
Collapse
Affiliation(s)
- Aamir Nawaz
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Tasleem
- Department of Physics, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Zia Ahmad
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Aaysha Ihsan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
2
|
He M, Huang Y, Wang J, Chen Z, Xie J, Cui Z, Xu D, Zhang X, Yao W. Advances in polysaccharide-based antibacterial materials. Int J Biol Macromol 2025; 308:142598. [PMID: 40158563 DOI: 10.1016/j.ijbiomac.2025.142598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/16/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Microbial contamination is a major threat to the public health and a primary cause of food spoilage, leading to significant economic losses worldwide. Various materials have been used to combat microbes, including inorganic materials, metals and polymers. Among these, natural polymers have attracted much attention in both academic and industrial research due to their abundance, renewability, biocompatibility, biodegradability and ease of processing. Polysaccharides, such as cellulose and chitosan (chitin), are a crucial category of natural polymers. However, most polysaccharides lack inherent antibacterial activity, limiting their applications in fields like antibacterial packaging and wound dressing etc. Therefore, it is crucial to increase their antibacterial property to expand their application as green antibacterial materials. Various methods, including blending, grafting and in-situ synthesis, have been used to fabricate polysaccharide-based antibacterial materials. This review highlights the major advancements and potential of novel polysaccharide-based antibacterial materials, primarily used in antibacterial food packaging or wound dressings. Moreover, the future prospects and challenges of polysaccharide-based antibacterial materials and the incorporated antimicrobial compounds are also discussed.
Collapse
Affiliation(s)
- Meng He
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Yujia Huang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinhua Wang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zitong Chen
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinshuo Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhicheng Cui
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Dingfeng Xu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Xinjiang Zhang
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Wei Yao
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
3
|
Ekinci A, Şahin Ö, Kutluay S, Horoz S, Canpolat G, Çokyaşa M, Baytar O. Designing copper-doped zinc oxide nanoparticle by tobacco stem extract-mediated green synthesis for solar cell efficiency and photocatalytic degradation of methylene blue. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2183-2193. [PMID: 39037035 DOI: 10.1080/15226514.2024.2379605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
This study presents the green synthesis of copper-doped zinc oxide (Cu-doped ZnO) nanoparticles using tobacco stem (TS) extract. The environmentally friendly synthesis method ensures distinct features, high efficiency, and applicability in various fields, particularly in solar cell technology and photocatalytic applications. ZnO nanostructures are investigated due to their unique properties, cost-effectiveness, and broad range of applications. The nanoparticles are synthesized with varying Cu concentrations, and their structural, morphological, and compositional characteristics are thoroughly analyzed. The Cu-doped ZnO nanoparticles exhibit improved properties, such as increased surface area and reduced particle size, attributed to the incorporation of Cu dopants. The green synthesis approach using TS extract serves as a stabilizing agent and avoids the toxicity associated with chemical methods. Characterization techniques including SEM, TEM, EDX, FTIR, and XRD confirm the successful synthesis of the nanoparticles. Photocatalytic degradation studies reveal that the 5% Cu-doped ZnO exhibits the highest photocatalytic activity against methylene blue, attributed to synergistic effects between Cu and ZnO, including oxygen vacancy and electron-hole pair recombination rate suppression. The photocatalytic mechanism involves the generation of superoxide and hydroxyl radicals, leading to methylene blue degradation. Furthermore, the Cu-doped ZnO nanoparticles demonstrate promising photovoltaic performance, with the optimal efficiency observed at a 5% Cu concentration. The study suggests that Cu-doped ZnO has the potential to enhance solar cell efficiency and could serve as an alternative material in solar cell applications. Future research should focus on refining Cu-doped ZnO for further improvements in solar energy conversion efficiency.
Collapse
Affiliation(s)
- Arzu Ekinci
- Department of Occupational Health and Safety, Siirt University, Siirt, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sabit Horoz
- Department of Metallurgical and Materials, Sivas Science and Technology University, Sivas, Turkey
| | | | - Mine Çokyaşa
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| | - Orhan Baytar
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
4
|
Ozelin SD, Esperandim TR, Dias FGG, Pereira LDF, Garcia CB, de Souza TO, Magalhães LF, Barud HDS, Sábio RM, Tavares DC. Nanocomposite Based on Bacterial Cellulose and Silver Nanoparticles Improve Wound Healing Without Exhibiting Toxic Effect. J Pharm Sci 2024; 113:2383-2393. [PMID: 38615814 DOI: 10.1016/j.xphs.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Wound healing is an important and complex process, containing a multifaceted process governed by sequential yet overlapping phases. Certain treatments can optimize local physiological conditions and improve wound healing. Silver nanoparticles (AgNP) are widely known for their antimicrobial activity. On the other hand, bacterial cellulose (BC) films have been used as a dressing that temporarily substitutes the skin, offering many advantages in optimizing wound healing, in addition to being highly biocompatible. Considering the promising activities of AgNP and BC films, the present study aimed to evaluate the wound healing activity in Wistar Hannover rats using a nanocomposite based on bacterial cellulose containing AgNP (AgBC). In a period of 21 days, its influence on the wound area, microbial growth, histopathological parameters, and collagen content were analyzed. In addition, toxicity indicators were assessed, such as weight gain, water consumption, and creatinine and alanine transaminase levels. After 14 days of injury, the animals treated with AgBC showed a significant increase in wound contraction. The treatment with AgBC significantly reduced the number of microbial colonies compared to other treatments in the first 48 h after the injury. At the end of the 21 experimental days, an average wound contraction rate greater than 97 % in relation to the initial area was observed, in addition to a significant increase in the amount of collagen fibers at the edge of the wounds, lower scores of necrosis, angiogenesis and inflammation, associated with no systemic toxicity. Therefore, it is concluded that the combination of preexisting products to form a new nanocomposite based on BC and AgNP amplified the biological activity of these products, increasing the effectiveness of wound healing and minimizing possible toxic effects of silver.
Collapse
Affiliation(s)
- Saulo Duarte Ozelin
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | | | | | - Lucas de Freitas Pereira
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | - Cristiane Buzatto Garcia
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | - Thiago Olímpio de Souza
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | | | - Hernane da Silva Barud
- University of Araraquara, Biopolymers and Biomaterials Laboratory, Rua Carlos Gomes, 1338, 14801-320, Araraquara, São Paulo, Brazil; BioSmart Nano, Av. Jorge Fernandes de Mattos, 311, 14808-162 Araraquara, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01, 14800-903, Araraquara, São Paulo, Brazil
| | - Denise Crispim Tavares
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil.
| |
Collapse
|