1
|
Ma K, Zhou R, Yang HD, Pang XY, Li N, Song ZX, Tang ZS, Xu HB. Chuanxiong Rhizoma extracts alleviate hyperuricaemia-induced renal injury by reducing serum UA levels and renoprotection. Fitoterapia 2025; 182:106456. [PMID: 40024551 DOI: 10.1016/j.fitote.2025.106456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Chuanxiong Rhizoma is the dried rhizome of the Apiaceae plant Ligusticum chuanxiong Hort (Chuanxiong). Previously, we demonstrated the antihyperuricaemic and anti-acute gouty arthritis effects of Chuanxiong Rhizoma ethyl acetate extracts (ECX B) in mice. However, it is unclear whether ECX B is optimal for lowering urate levels. This study aims to find the optimal extraction of the Chuanxiong Rhizoma in hyperuricemia rats. Further to explore the anti-hyperuricemia effects, underlying mechanism, and the main active compounds in vitro and in vivo. This study demonstrated that ECX B was the most effective extract in lowering uric acid levels and protecting the kidneys in vivo among the different tested extracts. ECX B significantly reduced the serum uric acid (UA), blood urea nitrogen (BUN), creatinine (CRE) and xanthine oxidase (XOD) levels and alleviated kidney pathology in hyperuricaemic rats, modulated the mRNA and protein expression of the UA transporters urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporter 1 (OAT1) and ATP binding cassette subfamily G member 2 (ABCG2). Subsequently, 23 compounds were prepared and characterized by a series of natural medicinal chemistry techniques. Then, we found that (Z)-3-butylidene-4,5-dihydroxyphthalide (CX-F14) was the main active compound produced by ECX B. Overall, this work revealed that ECX B was the optimal Chuanxiong Rhizoma extract for the treatment of hyperuricaemia. ECX B exerted an antihyperuricaemic effect mainly by modulating UA transporters and protecting the kidney. CX-F14 is a possible active compound of ECX B. These findings could lead to new applications for Chuanxiong Rhizoma.
Collapse
Affiliation(s)
- Kang Ma
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Rui Zhou
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| | - Hao-Dong Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Xia-Yun Pang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Nan Li
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zhong-Xing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zhi-Shu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China; China Academy of Chinese Medical Sciences, Beijing 100029, China
| | - Hong-Bo Xu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| |
Collapse
|
2
|
Wang Y, Wu L, Wang H, Jiang M, Chen Y, Zheng X, Li L, Yin Q, Han L, Bai L, Bian Y. Ligusticum chuanxiong: a chemical, pharmacological and clinical review. Front Pharmacol 2025; 16:1523176. [PMID: 40235541 PMCID: PMC11996930 DOI: 10.3389/fphar.2025.1523176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
Ethnopharmacological Relevance The dried rhizome of Ligusticum chuanxiong S.H.Qiu, Y.Q.Zeng, K.Y.Pan, Y.C.Tang and J.M.Xu (Apiaceae; including the horticultural variety Ligusticum chuanxiong Hort.) [synonym: Conioselinum anthriscoides (H.Boissieu) Pimenov and Kljuykov (The taxonomic classification has been adopted by the World Checklist of Vascular Plants)] is a traditional Chinese botanical drug renowned for its anti-inflammatory and antioxidant properties. It has been widely used to treatment various diseases, particularly cardio-cerebral vascular diseases (CCVDs). Aim of the review This review aims to summarize recent advances in Ligusticum chuanxiong (CX) research, including its chemical composition and pharmacological effects, and modern clinical applications. Materials and methods A systematic literature search was conducted using keywords such as "Chuanxiong," "traditional Chinese medicine," "chemical components," "metabolites," "CCVDs," and "pharmacological effects" to identify relevant literature published between 2014 and 2025. Databases including PubMed, Web of Science, Google Scholar, and CNKI were utilized. Chemical structures in SMILES format were retrieved from the PubChem, and two-dimensional chemical structures were generated using ChemDraw Ultra 8.0. Classical prescriptions of chuanxiong were obtained from authoritative traditional Chinese medicine databases. Results Over 100 metabolites have been isolated and identified from CX, classified into nine major classes. Key bioactive compounds include senkyunolide A, ligustilide, tetramethylpyrazine (TMP), and ligusticum CX polysaccharides (LCP). CX demonstrates significant pharmacological effects in treating CCVDs, such as atherosclerosis (AS), myocardial and cerebral ischemia-reperfusion injury, and hypertension. Its therapeutic mechanisms include antiplatelet activity, endothelial cell protection, anti-inflammatory, antioxidant, and anti-apoptotic properties. CX can be administered alone or in combination with other traditional Chinese medicines (TCMs) or chemical drugs, showing efficacy in cardiovascular, nervous system, digestive system disorders, as well as analgesia and anticancer activities. Conclusion CX holds substantial clinical value for treating multi-system diseases, with extensive evidence supporting its use in CCVDs. Further research and clinical exploration of CX are warranted to fully harness its therapeutic potential.
Collapse
Affiliation(s)
- Yin Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hulin Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyu Jiang
- School of Pharmacy, North Sichuan Medical Collage, Nanchong, China
| | - Yu Chen
- Power China Chengdu Engineering Corporation Limited, Chengdu, China
| | - Xingyue Zheng
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lian Li
- Department of Pharmacy, The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lizhu Han
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Li Y, Liu H, Wang S, Zhang S, Li W, Zhang G, Zhao Y. Rapid screening of xanthine oxidase inhibitors from Ligusticum wallichii by using xanthine oxidase functionalized magnetic metal-organic framework. Anal Bioanal Chem 2024; 416:6651-6662. [PMID: 39347815 DOI: 10.1007/s00216-024-05570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
In this study, xanthine oxidase was immobilized for the first time using a novel magnetic metal-organic framework material (Fe3O4-SiO2-NH2@MnO2@ZIF-8-NH2). A ligand fishing method was established to rapidly screen XOD inhibitors from Ligusticum wallichii based on the immobilized XOD. Characterization and properties of the immobilized enzyme revealed its excellent stability and reusability. A ligand was screened from Ligusticum wallichii and identified as ligustilide by ultra-high performance liquid chromatography tandem mass spectrometry. The IC50 value of ligustilide was determined to be 27.70 ± 0.13 μM through in vitro inhibition testing. Furthermore, molecular docking verified that ligustilide could bind to amino acid residues at the active site of XOD. This study provides a rapid and effective method for the preliminary screening of XOD inhibitors from complex natural products and has great potential for further discovery of anti-hyperuricemic compounds.
Collapse
Affiliation(s)
- Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, 610039, China
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Sisi Zhang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Wen Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| |
Collapse
|