1
|
Hu CW, Chang YJ, Chang WH, Cooke MS, Chen YR, Chao MR. A Novel Adductomics Workflow Incorporating FeatureHunter Software: Rapid Detection of Nucleic Acid Modifications for Studying the Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:75-89. [PMID: 38153287 PMCID: PMC11915021 DOI: 10.1021/acs.est.3c04674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Exposure to the physicochemical agents that interact with nucleic acids (NA) may lead to modification of DNA and RNA (i.e., NA modifications), which have been associated with various diseases, including cancer. The emerging field of NA adductomics aims to identify both known and unknown NA modifications, some of which may also be associated with proteins. One of the main challenges for adductomics is the processing of massive and complex data generated by high-resolution tandem mass spectrometry (HR-MS/MS). To address this, we have developed a software called "FeatureHunter", which provides the automated extraction, annotation, and classification of different types of key NA modifications based on the MS and MS/MS spectra acquired by HR-MS/MS, using a user-defined feature list. The capability and effectiveness of FeatureHunter was demonstrated by analyzing various NA modifications induced by formaldehyde or chlorambucil in mixtures of calf thymus DNA, yeast RNA and proteins, and by analyzing the NA modifications present in the pooled urines of smokers and nonsmokers. The incorporation of FeatureHunter into the NA adductomics workflow offers a powerful tool for the identification and classification of various types of NA modifications induced by reactive chemicals in complex biological samples, providing a valuable resource for studying the exposome.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, Florida 33620, United States
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
2
|
Wilson KA, Jeong YER, Wetmore SD. Multiscale computational investigations of the translesion synthesis bypass of tobacco-derived DNA adducts: critical insights that complement experimental biochemical studies. Phys Chem Chem Phys 2022; 24:10667-10683. [PMID: 35502640 DOI: 10.1039/d2cp00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Among the numerous agents that damage DNA, tobacco products remain one of the most lethal and result in the most diverse set of DNA lesions. This perspective aims to provide an overview of computational work conducted to complement experimental biochemical studies on the mutagenicity of adducts derived from the most potent tobacco carcinogen, namely 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosaminoketone or NNK). Lesions ranging from the smallest methylated thymine derivatives to the larger, flexible pyridyloxobutyl (POB) guanine adducts are considered. Insights are obtained from density functional theory (DFT) calculations and molecular dynamics (MD) simulations into the damaged nucleobase and nucleoside structures, the accommodation of the lesions in the active site of key human polymerases, the intrinsic base pairing potentials of the adducts, and dNTP incorporation opposite the lesions. Overall, the computational data provide atomic level information that can rationalize the differential mutagenic properties of tobacco-derived lesions and uncover important insights into the impact of adduct size, nucleobase, position, and chemical composition of the bulky moiety.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
3
|
Li Y, Hecht SS. Metabolism and DNA Adduct Formation of Tobacco-Specific N-Nitrosamines. Int J Mol Sci 2022; 23:5109. [PMID: 35563500 PMCID: PMC9104174 DOI: 10.3390/ijms23095109] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/06/2023] Open
Abstract
The tobacco-specific N-nitrosamines 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) always occur together and exclusively in tobacco products or in environments contaminated by tobacco smoke. They have been classified as "carcinogenic to humans" by the International Agency for Research on Cancer. In 1998, we published a review of the biochemistry, biology and carcinogenicity of tobacco-specific nitrosamines. Over the past 20 years, considerable progress has been made in our understanding of the mechanisms of metabolism and DNA adduct formation by these two important carcinogens, along with progress on their carcinogenicity and mutagenicity. In this review, we aim to provide an update on the carcinogenicity and mechanisms of the metabolism and DNA interactions of NNK and NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
4
|
Ma G, Yu H, Xu X, Geng L, Wei X, Wen J, Wang Z. Molecular Basis for Metabolic Regioselectivity and Mechanism of Cytochrome P450s toward Carcinogenic 4-(Methylnitrosamino)-(3-pyridyl)-1-butanone. Chem Res Toxicol 2020; 33:436-447. [PMID: 31889441 DOI: 10.1021/acs.chemrestox.9b00353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As an abundantly present tobacco component, carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) has also been detected in atmospheric particulate matter, suggesting the ineluctable exposure risk of this contaminant. NNK metabolic activation by cytochrome P450 enzymes (CYPs) is a prerequisite to exerting its genotoxicity, but the metabolic regioselectivity and mechanism are still unknown. Here the binding feature and regioselectivity of CYPs 1A1, 1A2, 2A6, 2A13, 2B6, and 3A4 toward NNK are unraveled through molecular docking and molecular dynamics (MD) simulations. Binding mode analyses reveal that 1A2 and 2B6 have definite preferences for NNK α-methyl hydroxylation, while the other four CYPs preferentially catalyze α-methylene hydroxylation. The binding affinities between NNK and CYPs evaluated by the binding free energies follow the order 2A13 > 2B6 > 1A2 > 2A6 > 1A1 > 3A4. Density functional theory (DFT) calculations are further performed to characterize the mechanism of NNK biotransformation. Results show that the α-hydroxyNNK generated from α-hydroxylation may undergo nonenzymatic decomposition to form genotoxic diazohydroxide and aldehyde, and further oxidation by P450 to yield nitrosamide, which mainly contributes to NNK toxification capacity. Meanwhile the pyridine N-oxidation and denitrosation of Cα-radical intermediate play an important role in detoxifying NNK. Overall, the present study provides the molecular basis for CYP-catalyzed regioselectivity and mechanism of NNK biotransformation, which can enable the identification of metabolites for assessing the health risk of individual NNK exposure.
Collapse
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Haiying Yu
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Xiaoqin Xu
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Liming Geng
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Jiale Wen
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine , Hangzhou Normal University , Hangzhou 311121 , China
| |
Collapse
|
5
|
Wilson KA, Garden JL, Wetmore NT, Felske LR, Wetmore SD. DFT and MD Studies of Formaldehyde-Derived DNA Adducts: Molecular-Level Insights into the Differential Mispairing Potentials of the Adenine, Cytosine, and Guanine Lesions. J Phys Chem A 2019; 123:6229-6240. [PMID: 31241337 DOI: 10.1021/acs.jpca.9b03899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Katie A. Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Josh L. Garden
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Natasha T. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Lindey R. Felske
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
6
|
Ma B, Stepanov I, Hecht SS. Recent Studies on DNA Adducts Resulting from Human Exposure to Tobacco Smoke. TOXICS 2019; 7:E16. [PMID: 30893918 PMCID: PMC6468371 DOI: 10.3390/toxics7010016] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Abstract
DNA adducts are believed to play a central role in the induction of cancer in cigarette smokers and are proposed as being potential biomarkers of cancer risk. We have summarized research conducted since 2012 on DNA adduct formation in smokers. A variety of DNA adducts derived from various classes of carcinogens, including aromatic amines, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, alkylating agents, aldehydes, volatile carcinogens, as well as oxidative damage have been reported. The results are discussed with particular attention to the analytical methods used in those studies. Mass spectrometry-based methods that have higher selectivity and specificity compared to 32P-postlabeling or immunochemical approaches are preferred. Multiple DNA adducts specific to tobacco constituents have also been characterized for the first time in vitro or detected in vivo since 2012, and descriptions of those adducts are included. We also discuss common issues related to measuring DNA adducts in humans, including the development and validation of analytical methods and prevention of artifact formation.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Wilson KA, Holland CD, Wetmore SD. Uncovering a unique approach for damaged DNA replication: A computational investigation of a mutagenic tobacco-derived thymine lesion. Nucleic Acids Res 2019; 47:1871-1879. [PMID: 30605521 PMCID: PMC6393286 DOI: 10.1093/nar/gky1265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 01/01/2023] Open
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone is a potent nicotine carcinogen that leads to many DNA lesions, the most persistent being the O2-[4-oxo-4-(3-pyridyl)butyl]thymine adduct (POB-T). Although the experimental mutagenic profile for the minor groove POB-T lesion has been previously reported, the findings are puzzling in terms of the human polymerases involved. Specifically, while pol κ typically replicates minor groove adducts, in vivo studies indicate pol η replicates POB-T despite being known for processing major groove adducts. Our multiscale modeling approach reveals that the canonical (anti) glycosidic orientation of POB-T can fit in the pol κ active site, but only a unique (syn) POB-T conformation is accommodated by pol η. These distinct binding orientations rationalize the differential in vitro mutagenic spectra based on the preferential stabilization of dGTP and dTTP opposite the lesion for pol κ and η, respectively. Overall, by uncovering the first evidence for the replication of a damaged pyrimidine in the syn glycosidic orientation, the current work provides the insight necessary to clarify a discrepancy in the DNA replication literature, expand the biological role of the critical human pol η, and understand the mutational signature in human cancers associated with tobacco exposure.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Carl D Holland
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
8
|
Ma B, Zarth AT, Carlson ES, Villalta PW, Upadhyaya P, Stepanov I, Hecht SS. Methyl DNA Phosphate Adduct Formation in Rats Treated Chronically with 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of Its Metabolite 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem Res Toxicol 2018; 31:48-57. [PMID: 29131934 PMCID: PMC5770887 DOI: 10.1021/acs.chemrestox.7b00281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/29/2022]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a powerful lung carcinogen in animal models and is considered a causative factor for lung cancer in tobacco users. NNK is stereoselectively and reversibly metabolized to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also a lung carcinogen. Both NNK and NNAL undergo metabolic activation by α-hydroxylation on their methyl groups to form pyridyloxobutyl and pyridylhydroxybutyl DNA base and phosphate adducts, respectively. α-Hydroxylation also occurs on the α-methylene carbons of NNK and NNAL to produce methane diazohydroxide, which reacts with DNA to form methyl DNA base adducts. DNA adducts of NNK and NNAL are important in their mechanisms of carcinogenesis. In this study, we characterized and quantified methyl DNA phosphate adducts in the lung of rats treated with 5 ppm of NNK, (S)-NNAL, or (R)-NNAL in drinking water for 10, 30, 50, and 70 weeks, by using a novel liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry method. A total of 23, 21, and 22 out of 32 possible methyl DNA phosphate adducts were detected in the lung tissues of rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. Levels of the methyl DNA phosphate adducts were 2290-4510, 872-1120, and 763-1430 fmol/mg DNA, accounting for 15-38%, 8%, and 5-9% of the total measured DNA adducts in rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. The methyl DNA phosphate adducts characterized in this study further enriched the diversity of DNA adducts formed by NNK and NNAL. These results provide important new data regarding NNK- and NNAL-derived DNA damage and new insights pertinent to future mechanistic and biomonitoring studies of NNK, NNAL, and other chemical methylating agents.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Adam T. Zarth
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Erik S. Carlson
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Affiliation(s)
- Yang Yu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yuxiang Cui
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
10
|
Leng J, Wang Y. Liquid Chromatography-Tandem Mass Spectrometry for the Quantification of Tobacco-Specific Nitrosamine-Induced DNA Adducts in Mammalian Cells. Anal Chem 2017; 89:9124-9130. [PMID: 28749651 PMCID: PMC5620023 DOI: 10.1021/acs.analchem.7b01857] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantification of DNA lesions constitutes one of the main tasks in toxicology and in assessing health risks accompanied by exposure to carcinogens. Tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) can undergo metabolic transformation to give a reactive intermediate that pyridyloxobutylates nucleobases and phosphate backbone of DNA. Here, we reported a highly sensitive method, relying on the use of nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS), for the simultaneous quantifications of O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O6-POBdG) as well as O2- and O4-[4-(3-pyridyl)-4-oxobut-1-yl]-thymidine (O2-POBdT and O4-POBdT). By using this method, we measured the levels of the three DNA adducts with the use of 10 μg of DNA isolated from cultured mammalian cells exposed to a model pyridyloxobutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc). Our results demonstrated, for the first time, the formation of O4-POBdT in naked DNA and in genomic DNA of cultured mammalian cells exposed with NNKOAc. We also revealed that the levels of the three lesions increased with the dose of NNKOAc and that O2-POBdT and O4-POBdT could be subjected to repair by the nucleotide excision repair (NER) pathway. The method reported here will be useful for investigations about the involvement of other DNA repair pathways in the removal of these lesions and for human toxicological studies in the future.
Collapse
Affiliation(s)
- Jiapeng Leng
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Corresponding Author. Tel.: (951) 827-2700. Fax: (951) 827-4713.
| |
Collapse
|