1
|
Sarkar S, Moitra P, Duan W, Bhattacharya S. A Multifunctional Aptamer Decorated Lipid Nanoparticles for the Delivery of EpCAM-targeted CRISPR/Cas9 Plasmid for Efficacious In Vivo Tumor Regression. Adv Healthc Mater 2024; 13:e2402259. [PMID: 39212195 DOI: 10.1002/adhm.202402259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Epithelial cell adhesion molecule (EpCAM) gene encodes a type-I trans-membrane glycoprotein that is overexpressed in many cancerous epithelial cells and promotes tumor progression by regulating the expression of several oncogenes like c-myc and other cyclins. Because of this tumorigenic association, the EpCAM gene has been a potential target for anti-cancer therapy in recent days. Herein, it is attempted to knockout the proto-oncogenic EpCAM expression by efficiently delivering an all-in-one Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) plasmid via a lipid nanoparticle system made out of synthetic stimuli-sensitive lipids. The plasmid possesses the necessary information in the form of a guide RNA targeted to the EpCAM gene. The aptamer decorated system selectively targets EpCAM overexpressed cells and efficiently inhibits the genetic expression. It has explored the pH-responsive property of the developed lipid nanoparticles and monitored their efficacy in various cancer cell lines of different origins with elevated EpCAM levels. The phenomenon has further been validated in vivo in non-immunocompromised mouse tumor models. Overall, the newly developed aptamer decorated lipid nanoparticle system has been proven to be efficacious for the delivery of EpCAM-targeted CRISPR/Cas9 plasmid.
Collapse
Affiliation(s)
- Sourav Sarkar
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, 760003, India
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, 700032, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Yerpedu, Tirupati District, Andhra Pradesh, 517619, India
| |
Collapse
|
2
|
Panchal SS, Vasava DV. Synthetic biodegradable polymeric materials in non-viral gene delivery. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2167081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Siddhi S. Panchal
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
3
|
Lohchania B, Christopher AC, Arjunan P, Mahalingam G, Kathirvelu D, Prasannan A, Venkatesan V, Taneja P, KM MK, Thangavel S, Marepally S. Diosgenin enhances liposome-enabled nucleic acid delivery and CRISPR/Cas9-mediated gene editing by modulating endocytic pathways. Front Bioeng Biotechnol 2023; 10:1031049. [PMID: 36698628 PMCID: PMC9868636 DOI: 10.3389/fbioe.2022.1031049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
The CRISPR/Cas9 system holds great promise in treating genetic diseases, owing to its safe and precise genome editing. However, the major challenges to implementing the technology in clinics lie in transiently limiting the expression of genome editing factors and achieving therapeutically relevant frequencies with fidelity. Recent findings revealed that non-viral vectors could be a potential alternative delivery system to overcome these limitations. In our previous research, we demonstrated that liposomal formulations with amide linker-based cationic lipids and cholesterol were found to be effective in delivering a variety of nucleic acids. In the current study, we screened steroidal sapogenins as an alternative co-lipid to cholesterol in cationic liposomal formulations and found that liposomes with diosgenin (AD, Amide lipid: Diosgenin) further improved nucleic acid delivery efficacy, in particular, delivering Cas9 pDNA and mRNA for efficient genome editing at multiple loci, including AAVS1 and HBB, when compared to amide cholesterol. Mechanistic insights into the endocytosis of lipoplexes revealed that diosgenin facilitated the lipoplexes' cholesterol-independent and clathrin-mediated endocytosis, which in turn leads to increased intracellular delivery. Our study identifies diosgenin-doped liposomes as an efficient tool to deliver CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Brijesh Lohchania
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,Sharda University, Greater Noida, India
| | - Abisha Crystal Christopher
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,Thiruvalluvar University, Vellore, India
| | - Porkizhi Arjunan
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,Manipal Academy of Higher Education, Manipal University, Manipal, India
| | | | - Durga Kathirvelu
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Aishwarya Prasannan
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Vigneshwaran Venkatesan
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,Manipal Academy of Higher Education, Manipal University, Manipal, India
| | | | - Mohan Kumar KM
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,*Correspondence: Saravanabhavan Thangavel, ; Srujan Marepally,
| | - Srujan Marepally
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,*Correspondence: Saravanabhavan Thangavel, ; Srujan Marepally,
| |
Collapse
|
4
|
Mahalingam G, Rachamalla HK, Arjunan P, Periyasami Y, M S, Thangavel S, Mohankumar KM, Moorthy M, Velayudhan SR, Srivastava A, Marepally S. Optimization of SARS-CoV-2 Pseudovirion Production in Lentivirus Backbone With a Novel Liposomal System. Front Pharmacol 2022; 13:840727. [PMID: 35401169 PMCID: PMC8990231 DOI: 10.3389/fphar.2022.840727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/11/2023] Open
Abstract
Due to the fast mutating nature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of novel therapeutics, vaccines, and evaluating the efficacies of existing one’s against the mutated strains is critical for containing the virus. Pseudotyped SARS-CoV-2 viruses are proven to be instrumental in evaluating the efficiencies of therapeutics, owing to their ease in application and safety when compared to handling the live virus. However, a comprehensive protocol that includes selecting transfection reagents, validating different packaging systems for high-throughput screening of neutralizing antibodies, is still a requisite. To this end, we designed and synthesized amide linker-based cationic lipids with varying hydrophilic head groups from dimethyl (Lipo-DME) to methyl, ethylhydroxyl (Lipo-MeOH), and diethylhydroxyl (Lipo-DOH) keeping the hydrophobic tail, stearic acid, as constant. Among the liposomal formulations of these lipids, Lipo-DOH was found to be superior in delivering plasmids and demonstrated comparable transfection efficiencies with commercial standard Lipofectamine 3000. We further used Lipo-DOH for lentivirus and SARS-CoV-2 pseudovirion preparation. For comparing different lentivirus packaging systems, we optimized conditions using Addgene and BEI systems and found that the BEI lenti plasmid system was found to be efficient in making lentiviruses using Lipo-DOH. Using the optimized transfection reagent and the lentivirus system, we developed a robust protocol for the generation of SARS-CoV-2 pseudovirions and characterized their infectivity in human ACE2 expressing HEK-293T cells and neutralizing properties in IgG against spike protein of SARS-CoV-2 positive human sera from individuals recovered from COVID-19.
Collapse
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | | | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Salma M
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | | | | | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College, Vellore, India
| | - Shaji R. Velayudhan
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
- *Correspondence: Srujan Marepally,
| |
Collapse
|
5
|
Rapaka H, Manturthi S, Arjunan P, Venkatesan V, Thangavel S, Marepally S, Patri SV. Influence of Hydrophobicity in the Hydrophilic Region of Cationic Lipids on Enhancing Nucleic Acid Delivery and Gene Editing. ACS APPLIED BIO MATERIALS 2022; 5:1489-1500. [PMID: 35297601 DOI: 10.1021/acsabm.1c01226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular delivery of biomolecules using non-viral vectors critically depends on the vectors' ability to allow the escape and release of the contents from the endosomes. Prior findings demonstrated that aromatic/hydrophobic group-containing amino acids such as phenylalanine (F) and tryptophan (W) destabilize cellular membranes by forming pores in the lipid bilayer. Taking cues from these findings, we have developed four α-tocopherol-based cationic amphiphiles by varying the aromatic/hydrophobic amino acids such as glycine (G), proline (P), phenylalanine (F), and tryptophan (W) as head groups and triazole in the linker region to study their impact on endosomal escape for the enhanced transfection efficacy. The lipids tocopherol-triazole-phenylalanine (TTF) and tocopherol-triazole-tryptophan (TTW) exhibited similar potential to commercial transfecting reagents, Lipofectamine (LF) 3000 and Lipofectamine Messenger Max (LFMM), respectively, in transfecting plasmid DNA and messenger RNA in multiple cultured cell lines. The TTW liposome was also found to be effective in delivering Cas9 mRNA and demonstrated equal efficiency of gene editing AAVS1 locus compared to LFMM in CHO, Neuro-2a, and EA.HY926 cell lines. In this current investigation, it is shown that the synthesized cationic lipids with aromatic hydrophobic R group-containing amino acids are safe, economic, and actually more efficient in nucleic acid delivery and genome-editing applications. These findings can be further explored in the genome-editing approach for treating genetic disorders.
Collapse
Affiliation(s)
- Hithavani Rapaka
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Shireesha Manturthi
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Porkizhi Arjunan
- Christian Medical College, Centre for Stem Cell Research, Vellore, Tamilnadu 632001, India
| | | | | | - Srujan Marepally
- Christian Medical College, Centre for Stem Cell Research, Vellore, Tamilnadu 632001, India
| | - Srilakshmi V Patri
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| |
Collapse
|
6
|
Saw PE, Cui GH, Xu X. Nanoparticles-mediated CRISPR/Cas gene editing delivery system. ChemMedChem 2022; 17:e202100777. [PMID: 35261159 DOI: 10.1002/cmdc.202100777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/06/2022] [Indexed: 11/09/2022]
Abstract
The CRISPR/Cas gene editing system utilizes CRISPR RNA to guide the endonuclease in specifically breaking target gene, and then repairs genomic DNA by the means of homology directed repair (HDR) and non-homologous end joining (NHEJ). The gene editing system can only play its role in gene editing when it enters the nucleus. This crucial step in the process of gene editing is the major hurdle to gene therapy as it is still a huge challenge to efficiently deliver the CRISPR/Cas system to target tissues and cells. The low delivery efficiency hinders the clinical transformation of this technology. At present, delivery systems mainly include physical methods, viral vectors, and non-viral vectors. Due to the advantages of nanomaterial, it is currently being used rapidly in developing non-viral delivery systems. This review focuses on the mechanism of CRISPR/Cas and the delivery of gene editing system, following the research progress of nanoparticle-mediated gene editing.
Collapse
Affiliation(s)
- Phei Er Saw
- Sun Yat-Sen Memorial Hospital, 107 West Yanjiang Road, 510000, Guangzhou, CHINA
| | - Guo-Hui Cui
- Sun Yat-sen University Zhongshan School of Medicine, Bio-safety Laboratory, CHINA
| | - Xiaoding Xu
- Sun Yat-Sen Memorial Hospital, Medical Research Center, CHINA
| |
Collapse
|
7
|
Sattari S, Adeli M, Beyranvand S, Nemati M. Functionalized Graphene Platforms for Anticancer Drug Delivery. Int J Nanomedicine 2021; 16:5955-5980. [PMID: 34511900 PMCID: PMC8416335 DOI: 10.2147/ijn.s249712] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Two-dimensional nanomaterials are emerging as promising candidates for a wide range of biomedical applications including tissue engineering, biosensing, pathogen incapacitation, wound healing, and gene and drug delivery. Graphene, due to its high surface area, photothermal property, high loading capacity, and efficient cellular uptake, is at the forefront of these materials and plays a key role in this multidisciplinary research field. Poor water dispersibility and low functionality of graphene, however, hamper its hybridization into new nanostructures for future nanomedicine. Functionalization of graphene, either by covalent or non-covalent methods, is the most useful strategy to improve its dispersion in water and functionality as well as processability into new materials and devices. In this review, recent advances in functionalization of graphene derivatives by different (macro)molecules for future biomedical applications are reported and explained. In particular, hydrophilic functionalization of graphene and graphene oxide (GO) to improve their water dispersibility and physicochemical properties is discussed. We have focused on the anticancer drug delivery of polyfunctional graphene sheets.
Collapse
Affiliation(s)
- Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohammad Nemati
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
8
|
Cholesterol Sequestration from Caveolae/Lipid Rafts Enhances Cationic Liposome-Mediated Nucleic Acid Delivery into Endothelial Cells. Molecules 2021; 26:molecules26154626. [PMID: 34361779 PMCID: PMC8346983 DOI: 10.3390/molecules26154626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 11/18/2022] Open
Abstract
Delivering nucleic acids into the endothelium has great potential in treating vascular diseases. However, endothelial cells, which line the vasculature, are considered as sensitive in nature and hard to transfect. Low transfection efficacies in endothelial cells limit their potential therapeutic applications. Towards improving the transfection efficiency, we made an effort to understand the internalization of lipoplexes into the cells, which is the first and most critical step in nucleic acid transfections. In this study, we demonstrated that the transient modulation of caveolae/lipid rafts mediated endocytosis with the cholesterol-sequestrating agents, nystatin, filipin III, and siRNA against Cav-1, which significantly increased the transfection properties of cationic lipid-(2-hydroxy-N-methyl-N,N-bis(2-tetradecanamidoethyl)ethanaminium chloride), namely, amide liposomes in combination with 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) (AD Liposomes) in liver sinusoidal endothelial cells (SK-Hep1). In particular, nystatin was found to be highly effective with 2–3-fold enhanced transfection efficacy when compared with amide liposomes in combination with Cholesterol (AC), by switching lipoplex internalization predominantly through clathrin-mediated endocytosis and macropinocytosis.
Collapse
|
9
|
Gómez-Varela AI, Gaspar R, Miranda A, Assis JL, Valverde RHF, Einicker-Lamas M, Silva BFB, De Beule PAA. Fluorescence cross-correlation spectroscopy as a valuable tool to characterize cationic liposome-DNA nanoparticle assembly. JOURNAL OF BIOPHOTONICS 2021; 14:e202000200. [PMID: 32827206 DOI: 10.1002/jbio.202000200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The development of nonviral gene delivery vehicles for therapeutic applications requires methods capable of quantifying the association between the genes and their carrier counterparts. Here we investigate the potential of fluorescence cross-correlation spectroscopy (FCCS) to characterize and optimize the assembly of nonviral cationic liposome (CL)-DNA complexes based on a CL formulation consisting of the cationic lipid DOTAP and zwitterionic lipid DOPC. We use a DNA plasmid for lipoplex loading encoding the Oct4 gene, critically involved in reprogramming somatic cells into induced pluripotent stem cells. We demonstrate that FCCS is able to quantitatively determine the extent of the association between DNA and the liposomes and assess its loading capacity. We also establish that the cationic lipid fraction, being proportional to the liposome membrane charge density, as well as charge ratio between the CLs and anionic DNA play an important role in the degree of interaction between the liposomes and DNA.
Collapse
Affiliation(s)
- Ana I Gómez-Varela
- International Iberian Nanotechnology Laboratory, Braga, Portugal
- Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ricardo Gaspar
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Adelaide Miranda
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Juliane L Assis
- Biomembranes Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael H F Valverde
- Biomembranes Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Biomembranes Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno F B Silva
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
10
|
Xu CF, Chen GJ, Luo YL, Zhang Y, Zhao G, Lu ZD, Czarna A, Gu Z, Wang J. Rational designs of in vivo CRISPR-Cas delivery systems. Adv Drug Deliv Rev 2021; 168:3-29. [PMID: 31759123 DOI: 10.1016/j.addr.2019.11.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/09/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
The CRISPR-Cas system initiated a revolution in genome editing when it was, for the first time, demonstrated success in the mammalian cells. Today, scientists are able to readily edit genomes, regulate gene transcription, engineer posttranscriptional events, and image nucleic acids using CRISPR-Cas-based tools. However, to efficiently transport CRISPR-Cas into target tissues/cells remains challenging due to many extra- and intra-cellular barriers, therefore largely limiting the applications of CRISPR-based therapeutics in vivo. In this review, we summarize the features of plasmid-, RNA- and ribonucleoprotein (RNP)-based CRISPR-Cas therapeutics. Then, we survey the current in vivo delivery systems. We specify the requirements for efficient in vivo delivery in clinical settings, and highlight both efficiency and safety for different CRISPR-Cas tools.
Collapse
|
11
|
Nanovesicle-Mediated Delivery Systems for CRISPR/Cas Genome Editing. Pharmaceutics 2020; 12:pharmaceutics12121233. [PMID: 33353099 PMCID: PMC7766488 DOI: 10.3390/pharmaceutics12121233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-editing technology has emerged as a potential tool for treating incurable diseases for which few therapeutic modalities are available. In particular, discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system together with the design of single-guide RNAs (sgRNAs) has sparked medical applications of genome editing. Despite the great promise of the CRISPR/Cas system, its clinical application is limited, in large part, by the lack of adequate delivery technology. To overcome this limitation, researchers have investigated various systems, including viral and nonviral vectors, for delivery of CRISPR/Cas and sgRNA into cells. Among nonviral delivery systems that have been studied are nanovesicles based on lipids, polymers, peptides, and extracellular vesicles. These nanovesicles have been designed to increase the delivery of CRISPR/Cas and sgRNA through endosome escape or using various stimuli such as light, pH, and environmental features. This review covers the latest research trends in nonviral, nanovesicle-based delivery systems that are being applied to genome-editing technology and suggests directions for future progress.
Collapse
|
12
|
Boeri L, Jacchetti E, Soncini M, Negro A, Albani D, Raimondi MT. Advantages and limitations of a supernegative GFP in facilitating MyoD intracellular tracking. Methods Appl Fluoresc 2020; 8:025007. [PMID: 32092706 DOI: 10.1088/2050-6120/ab797c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite intracellular molecular dynamics being fundamental to understand pathological, biomechanical or biochemical events, several processes are still not clear because of the difficulty of monitoring and measuring these phenomena. To engineer an effective fluorescent tool useful to improve protein intracellular tracking studies, we fused a supernegative green fluorescent protein, (-30)GFP, to a myogenic transcription factor, MyoD. The (-30)GFP-MyoD was able to pass the plasma membrane when complexed with cationic lipids. Fluorescence confocal microscopy showed the protein delivery in just 3 hours with high levels of protein transduction efficiency. Confocal acquisitions also confirmed the maintenance of the MyoD nuclear localization. To examine how the supernegative GFP influenced MyoD activity, we did gene expression analyses, which showed an inhibitory effect of (-30)GFP on transcription factor function. This negative effect was possibly due to a charge-driven interference mechanism, as suggested by further investigations by molecular dynamics simulations. Summarizing these results, despite the functional limitations related to the charge structural characteristics that specifically affected MyoD function, we found (-30)GFP is a suitable fluorescent label for improving protein intracellular tracking studies, such as nucleocytoplasmic transport in mechanotransduction.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Capella Roca B, Lao NT, Clynes M, Doolan P. Investigation and circumvention of transfection inhibition by ferric ammonium citrate in serum-free media for Chinese hamster ovary cells. Biotechnol Prog 2019; 36:e2954. [PMID: 31850663 DOI: 10.1002/btpr.2954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022]
Abstract
While reliable transfection methods are essential for Chinese hamster ovary (CHO) cell line engineering, reduced transfection efficiencies have been observed in several commercially prepared media. In this study, we aimed to assess common media additives that impede efficiency mediated by three chemical transfection agents: liposomal-based (Lipofectamine 2000), polymer-based (TransIT-X2), and lipopolyplex-based (TransIT-PRO). An in-house GFP-expressing vector and serum-free medium (BCR-F12: developed for the purposes of this study) were used to analyze transient transfection efficiencies of three CHO cell lines (CHO-K1, DG44, DP12). Compared to a selection of commercially available media, BCR-F12 displayed challenges associated with transfection in vendor-prepared formulations, with no detection when liposomal-based methods were used, reduced (<3%) efficiency observed when polymer-based methods were used and only limited efficiency (25%) with lipopolyplexes. Following a stepwise removal protocol, ferric ammonium citrate (FAC) was identified as the critical factor impeding transfection, with transfection enabled with the liposomal- and polymer-based methods and a 1.3- to 7-fold increased lipopolyplex efficiency observed in all cell lines in FAC-depleted media (-FAC), although lower viabilities were observed. Subsequent early addition of FAC (0.5-5 hr post-transfection) revealed 0.5 hr post-transfection as the optimal time to supplement in order to achieve transfection efficiencies similar to -FAC medium while retaining optimal cellular viabilities. In conclusion, FAC was observed to interfere with DNA transfection acting at early stages in all transfection agents and all cell lines studied, and a practical strategy to circumvent this problem is suggested.
Collapse
Affiliation(s)
- Berta Capella Roca
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.,SSPC-SFI Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| | - Nga T Lao
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.,SSPC-SFI Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
14
|
Abstract
The emergence of the CRISPR-Cas9 gene editing system has brought much hope and excitement to the field of gene therapy and the larger scientific community. However, in order for CRISPR-based therapies to be translated to the clinical setting, there is an urgent need to develop optimized vectors for their delivery. The delivery vector is a crucial determinant of the therapeutic efficacy of gene editing and should be designed to accommodate various factors including the form of the payload, the physiological environment, and the potential immune responses. Recently, biomaterials have become an attractive option for the delivery of Cas9 due to their tunability, biocompatibility and increasing efficacy at drug delivery. Biomaterials offer a unique solution for creating tailored vectors to meet the demands of various applications that cannot be easily met by other delivery methods. In this review, we will discuss the various biomaterial systems that have been used to deliver Cas9 in its plasmid, mRNA and protein forms. In addition, the functions of these materials will be reviewed to understand their roles in Cas9 delivery. Finally, the immune challenges associated with Cas9 and the delivery materials will be discussed as an understanding of the immune responses along with the functions of biomaterials will ultimately guide the field in designing new delivery systems for the clinical applications of CRISPR-Cas9.
Collapse
Affiliation(s)
- Joon Eoh
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
15
|
Li B, Zhang X, Dong Y. Nanoscale platforms for messenger RNA delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1530. [PMID: 29726120 PMCID: PMC6443240 DOI: 10.1002/wnan.1530] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/27/2022]
Abstract
Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Bin Li
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xinfu Zhang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, Ohio
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
16
|
Liu BY, He XY, Zhuo RX, Cheng SX. Reversal of tumor malignization and modulation of cell behaviors through genome editing mediated by a multi-functional nanovector. NANOSCALE 2018; 10:21209-21218. [PMID: 30417194 DOI: 10.1039/c8nr07321j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To effectively reverse tumor malignization by genome editing, a multi-functional self-assembled nanovector for the delivery of a genome editing plasmid specifically to tumor cells was developed. The nanovector core consisting of protamine and calcium carbonate entrapping the CRISPR-Cas9 plasmid is decorated by aptamer incorporated heparin. Owing to a high affinity between a MUC1 specific aptamer and mucin 1 (MUC1) overexpressed in tumor cells as well as the interaction between AS1411 and nucleolin on the tumor cell surface and cell nuclei, the nanovector can target the nuclei of tumorous cells for the knockout of focal adhesion kinase (FAK). Notably, the genome editing mediated by our delivery systems can effectively modulate cell behaviors and thus reverse tumor malignization. Up-regulated p53, p16, p21, E-cadherin, CD80, MICA, MICB and Fas, together with down-regulated MMP-9, vimentin, VEGF, TGF-β, CD47 and CD133 in genome edited cells indicate that the genome editing system can inhibit cancerous cell growth, prevent tumor invasion and metastasis, reverse tumor-induced immune suppression, and inhibit cancer stemness. More importantly, the edited cells can maintain the modulated cellular function after succeeding subcultures.
Collapse
Affiliation(s)
- Bo-Ya Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China.
| | | | | | | |
Collapse
|
17
|
Rangasami VK, Lohchania B, Voshavar C, Rachamalla HR, Banerjee R, Dhayani A, Thangavel S, Vemula PK, Marepally S. Exploring membrane permeability of Tomatidine to enhance lipid mediated nucleic acid transfections. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:327-334. [PMID: 29902420 DOI: 10.1016/j.bbamem.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 05/05/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023]
Abstract
Intracellular delivery of nucleic acids is one of the critical steps in the transfections. Prior findings demonstrated various strategies including membrane fusion, endosomal escape for the efficient cytoplasmic delivery. In our continuing efforts to improve the nucleic acids transfections, we harnessed cell permeable properties of Tomatidine (T), a steroidal alkaloid abundantly found in green tomatoes for maximizing intracellular delivery of lipoplexes. We doped Tomatidine into liposomes of cationic lipid with amide linker (A) from our lipid library. Six liposomal formulations (AT) of Lipid A (1 mM) with varying concentrations of Tomatidine (0-1 mM) were prepared and evaluated for their transfection efficacies. Owing to its signature characteristic of cell membrane permeability, Tomatidine modulated endocytosis process, enhanced the intracellular delivery of the lipoplexes, and in turn increased the transfection efficacy of cationic liposomes. Our findings provide 'proof of concept' for enhancing transfections in gene delivery applications with Tomatidine in cationic liposomal formulations. These findings can be further applied in lipid mediated gene therapy and drug delivery applications.
Collapse
Affiliation(s)
- Vignesh K Rangasami
- Centre for Stem Cell Research, Christian Medical College Campus, Bagayam, Vellore 632002, India
| | - Brijesh Lohchania
- Centre for Stem Cell Research, Christian Medical College Campus, Bagayam, Vellore 632002, India
| | | | | | - Rajkumar Banerjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Ashish Dhayani
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK-post, Bellary Road, Bengaluru 560065, India; The School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur-613401,Tamil Nadu, India
| | | | - Praveen K Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK-post, Bellary Road, Bengaluru 560065, India.
| | - Srujan Marepally
- Centre for Stem Cell Research, Christian Medical College Campus, Bagayam, Vellore 632002, India; Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK-post, Bellary Road, Bengaluru 560065, India.
| |
Collapse
|