1
|
Yoon B, Ahmadi N, Heo I, Shin SS, Kim JM, Park BJ. Single Particle Semi-Reversible Solvatochromic Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412189. [PMID: 40434240 DOI: 10.1002/smll.202412189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 05/03/2025] [Indexed: 05/29/2025]
Abstract
A semi-reversible solvatochromic sensor is presented using polydiacetylene@polydimethylsiloxane (PDA@PDMS) core-shell particles fabricated via a co-flow microfluidic method. Exposing these particles to specific volumes and types of solvents triggers the migration of unpolymerized 10,12-pentacosadiynoic acid (PCDA) monomers from the PDA core to the PDMS shell, enabling distinctive semi-reversible color-change patterns in both regions during repeated cycles of UV exposure and solvatochromism. The solvent-induced response of PDA@PDMS varies according to solvent permeability and solvent-mediated PCDA transport efficiency, which are influenced by PDMS swelling, solvent boiling point, and PCDA solubility. Compared to bare PDA particles and PDA/PDMS composite particles, PDA@PDMS exhibits superior solvent differentiation through distinct solvatochromic responses across a range of solvents. These PDA@PDMS core-shell particles offer a robust platform for real-time, precise multi-solvent detection, with significant potential for analytical and environmental monitoring applications.
Collapse
Affiliation(s)
- Boyoung Yoon
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Narges Ahmadi
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Inwoong Heo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Seung Soo Shin
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
2
|
Lanza G, Perez-Taborda JA, Avila A. Improving Temperature Adaptation for Food Safety: Colorimetric Nanoparticle-Based Time-Temperature Indicators (TTIs) to Detect Cumulative Temperature Disturbances. Foods 2025; 14:742. [PMID: 40077444 PMCID: PMC11898765 DOI: 10.3390/foods14050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 03/14/2025] Open
Abstract
The global commitment to ending hunger by 2030 has driven Colombia to align its Sustainable Development Goals (SDGs) toward reducing food waste and ensuring access to safe, nutritious food. A critical need is monitoring cumulative temperatures across food supply networks, prioritizing products over transport or storage infrastructure. This study introduces a Functional Time-Temperature Indicator (TTI) using nanodispersions of silver (Ag) and gold (Au) nanoparticles housed in 3D-printed plant-based resin containers. Nanoparticles were synthesized via three methods: in situ reduction (AgNPs), seed-based thermal synthesis (AgTNPs), and pulsed laser ablation in liquid (AuNPs). The TTIs operate through three colorimetric mechanisms: NP concentration, geometry changes, and agglomeration. At 4 °C, AgNPs and AgTNPs maintained stable color, while at 22 °C, they exhibited significant changes, with AgNPs reaching 252% variation within 5 h. AuNPs responded at lower temperatures, showing up to 27% variation. Containers enabled effective nanodispersion incorporation due to their thermal and optical properties. AgTNP-based TTIs demonstrated the most noticeable changes at 22 °C, with a total color difference (ΔE) of 39.9, easily detectable by observers. These TTIs provide robust solutions for continuous cold chain monitoring, enhancing food safety and preserving quality throughout the supply chain.
Collapse
Affiliation(s)
- Gustavo Lanza
- Centro de Microelectrónica (CMUA), Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes, Bogotá 111711, Colombia;
- Área de Ciencias Básicas, Facultad de Ingeniería, Universidad de Cundinamarca, Fusagasugá 252211, Colombia
| | - Jaime Andres Perez-Taborda
- Grupo de Nanoestructuras y Física Aplicada (NANOUPAR), Universidad Nacional de Colombia Sede De La Paz, La Paz 202010, Colombia;
| | - Alba Avila
- Centro de Microelectrónica (CMUA), Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes, Bogotá 111711, Colombia;
| |
Collapse
|
3
|
Akhavan-Mahdavi S, Mirbagheri MS, Assadpour E, Sani MA, Zhang F, Jafari SM. Electrospun nanofiber-based sensors for the detection of chemical and biological contaminants/hazards in the food industries. Adv Colloid Interface Sci 2024; 325:103111. [PMID: 38367336 DOI: 10.1016/j.cis.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Food contamination reveals a major health risk globally and presents a significant challenge for the food industry. It can stem from biological contaminants like pathogens, parasites, and viruses, or chemical contaminants such as heavy metals, pesticides, drugs, and hormones. There is also the possibility of naturally occurring hazardous chemicals. Consequently, the development of sensing platforms has become crucial to accurately and rapidly identify contaminants and hazards in food products. Electrospun nanofibers (NFs) offer a promising solution due to their unique three-dimensional architecture, large specific surface area, and ease of preparation. Moreover, NFs exhibit excellent biocompatibility, degradability, and adaptability, making monitoring more convenient and environmentally friendly. These characteristics also significantly reduce the detection process of contaminants. NF-based sensors have the ability to detect a wide range of biological, chemicals, and physical hazards. Recent research on NFs-based sensors for the detection of various food contaminants/hazards, such as pathogens, pesticide/drugs residues, toxins, allergens, and heavy metals, is presented in this review.
Collapse
Affiliation(s)
- Sahar Akhavan-Mahdavi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mahnaz Sadat Mirbagheri
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
4
|
Kim R, Mun B, Lim S, Park C, Kim J, Lim J, Jeong H, Son HY, Rho HW, Lim EK, Haam S. Colorimetric Detection of HER2-Overexpressing-Cancer-Derived Exosomes in Mouse Urine Using Magnetic-Polydiacetylene Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307262. [PMID: 37963850 DOI: 10.1002/smll.202307262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Breast cancer (BC) is a major global health problem, with ≈20-25% of patients overexpressing human epidermal growth factor receptor 2 (HER2), an aggressive marker, yet access to early detection and treatment varies across countries. A low-cost, equipment-free, and easy-to-use polydiacetylene (PDA)-based colorimetric sensor is developed for HER2-overexpressing cancer detection, designed for use in low- and middle-income countries (LMICs). PDA nanoparticles are first prepared through thin-film hydration. Subsequently, hydrophilic magnetic nanoparticles and HER2 antibodies are sequentially conjugated to them. The synthesized HER2-MPDA can be concentrated and separated by a magnetic field while inheriting the optical characteristics of PDA. The specific binding of HER2 antibody in HER2-MPDA to HER2 receptor in HER2-overexpressing exosomes causes a blue-to-red color change by altering the molecular structure of the PDA backbone. This colorimetric sensor can simultaneously separate and detect HER2-overexpressing exosomes. HER2-MPDA can detect HER2-overexpressing exosomes in the culture medium of HER2-overexpressing BC cells and in mouse urine samples from a HER2-overexpressing BC mouse model. It can selectively isolate and detect only HER2-overexpressing exosomes through magnetic separation, and its detection limit is found to be 8.5 × 108 particles mL-1. This colorimetric sensor can be used for point-of-care diagnosis of HER2-overexpressing BC in LMICs.
Collapse
Affiliation(s)
- Ryunhyung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seongjae Lim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaewook Lim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyein Jeong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Wook Rho
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Pour SRS, Calabria D, Emamiamin A, Lazzarini E, Pace A, Guardigli M, Zangheri M, Mirasoli M. Microfluidic-Based Non-Invasive Wearable Biosensors for Real-Time Monitoring of Sweat Biomarkers. BIOSENSORS 2024; 14:29. [PMID: 38248406 PMCID: PMC10813635 DOI: 10.3390/bios14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
Wearable biosensors are attracting great interest thanks to their high potential for providing clinical-diagnostic information in real time, exploiting non-invasive sampling of biofluids. In this context, sweat has been demonstrated to contain physiologically relevant biomarkers, even if it has not been exhaustively exploited till now. This biofluid has started to gain attention thanks to the applications offered by wearable biosensors, as it is easily collectable and can be used for continuous monitoring of some parameters. Several studies have reported electrochemical and optical biosensing strategies integrated with flexible, biocompatible, and innovative materials as platforms for biospecific recognition reactions. Furthermore, sampling systems as well as the transport of fluids by microfluidics have been implemented into portable and compact biosensors to improve the wearability of the overall analytical device. In this review, we report and discuss recent pioneering works about the development of sweat sensing technologies, focusing on opportunities and open issues that can be decisive for their applications in routine-personalized healthcare practices.
Collapse
Affiliation(s)
- Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Afsaneh Emamiamin
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
| | - Elisa Lazzarini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
| | - Andrea Pace
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum—University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
- Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|
6
|
Zhong Y, Wu J, Pan X, Liu B, Wang L. Aptamer-functionalized polydiacetylene biosensor for the detection of three foodborne pathogens. ANAL SCI 2024; 40:199-211. [PMID: 37856010 DOI: 10.1007/s44211-023-00445-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Rapid, simple and sensitive screening of foodborne pathogens is of great significance to ensure food safety. In this study, an aptamer-functionalized polydiacetylene (Apta-PDA) biosensor was developed for the detection of E. coli O157:H7, S. typhimurium or V. parahaemolyticus. First, aptamers responding to the target bacteria were modified on the surface of magnetic beads by covalent binding to form MBs-oligonucleotide conjugates for bacterial enrichment. Then, an Apta-PDA biosensor was obtained by connecting the aptamers to the PDA nanovesicles using the carbodiimide method. Molecular recognition occurred in the presence of the target bacteria, whereby the aptamer folded into a sequence-defined unique structure, resulting in an MBs-Apta/bacteria/Apta-PDA sandwich structure. Due to the optical properties of PDA, the blue-red transition of the detection system could be observed by the naked eye and quantified by the colorimetric response percentage (CR%). Under optimized conditions, the detection limits of E. coli O157:H7, S. typhimurium and V. parahaemolyticus were 39, 60 and 60 CFU/ml, respectively, with a selectivity of 100% and a reaction time of 30 min. Compared with the gold standard method, the accuracy of the three target bacteria detection reached 98%, 97.5% and 97%, respectively, and the sensitivity and specificity were both greater than 90%. The entire detection process was rapid and easy to execute without any special equipment, making this technology particularly suitable for resource-poor laboratories or regions.
Collapse
Affiliation(s)
- Yuhong Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China.
| | - Jiaqi Wu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310059, People's Republic of China
| | - Xiaoyan Pan
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Bo Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Lin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
7
|
Stimuli-Responsive and Antibacterial Cellulose-Chitosan Hydrogels Containing Polydiacetylene Nanosheets. Polymers (Basel) 2023; 15:polym15051062. [PMID: 36904304 PMCID: PMC10005511 DOI: 10.3390/polym15051062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Herein, we report a stimuli-responsive hydrogel with inhibitory activity against Escherichia coli prepared by chemical crosslinking of carboxymethyl chitosan (CMCs) and hydroxyethyl cellulose (HEC). The hydrogels were prepared by esterification of chitosan (Cs) with monochloroacetic acid to produce CMCs which were then chemically crosslinked to HEC using citric acid as the crosslinking agent. To impart a stimuli responsiveness property to the hydrogels, polydiacetylene-zinc oxide (PDA-ZnO) nanosheets were synthesized in situ during the crosslinking reaction followed by photopolymerization of the resultant composite. To achieve this, ZnO was anchored on carboxylic groups in 10,12-pentacosadiynoic acid (PCDA) layers to restrict the movement of the alkyl portion of PCDA during crosslinking CMCs and HEC hydrogels. This was followed by irradiating the composite with UV radiation to photopolymerize the PCDA to PDA within the hydrogel matrix so as to impart thermal and pH responsiveness to the hydrogel. From the results obtained, the prepared hydrogel had a pH-dependent swelling capacity as it absorbed more water in acidic media as compared to basic media. The incorporation of PDA-ZnO resulted in a thermochromic composite responsive to pH evidenced by a visible colour transition from pale purple to pale pink. Upon swelling, PDA-ZnO-CMCs-HEC hydrogels had significant inhibitory activity against E. coli attributed to the slow release of the ZnO nanoparticles as compared to CMCs-HEC hydrogels. In conclusion, the developed hydrogel was found to have stimuli-responsive properties and inhibitory activity against E. coli attributed to zinc nanoparticles.
Collapse
|
8
|
Song S, Jang H, Jeong W, Shim J, Kim SM, Jeon TJ. Thermohypersensitive polydiacetylene vesicles embedded in calcium-alginate hydrogel beads. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Yin J, Li J, Reddy VS, Ji D, Ramakrishna S, Xu L. Flexible Textile-Based Sweat Sensors for Wearable Applications. BIOSENSORS 2023; 13:bios13010127. [PMID: 36671962 PMCID: PMC9856321 DOI: 10.3390/bios13010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/12/2023]
Abstract
The current physical health care system has gradually evolved into a form of virtual hospitals communicating with sensors, which can not only save time but can also diagnose a patient's physical condition in real time. Textile-based wearable sensors have recently been identified as detection platforms with high potential. They are developed for the real-time noninvasive detection of human physiological information to comprehensively analyze the health status of the human body. Sweat comprises various chemical compositions, which can be used as biomarkers to reflect the relevant information of the human physiology, thus providing references for health conditions. Combined together, textile-based sweat sensors are more flexible and comfortable than other conventional sensors, making them easily integrated into the wearable field. In this short review, the research progress of textile-based flexible sweat sensors was reviewed. Three mechanisms commonly used for textile-based sweat sensors were firstly contrasted with an introduction to their materials and preparation processes. The components of textile-based sweat sensors, which mainly consist of a sweat transportation channel and collector, a signal-selection unit, sensing elements and sensor integration and communication technologies, were reviewed. The applications of textile-based sweat sensors with different mechanisms were also presented. Finally, the existing problems and challenges of sweat sensors were summarized, which may contribute to promote their further development.
Collapse
Affiliation(s)
- Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jingcheng Li
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Vundrala Sumedha Reddy
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Dongxiao Ji
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Wang P, Liu X, You Y, Wang M, Huang Y, Li Y, Li K, Yang Y, Feng W, Liu Q, Chen J, Yang X. Fabrication of High-Performance Colorimetric Membrane by Incorporation of Polydiacetylene into Polyarylene Ether Nitriles Electrospinning Nanofibrous Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4379. [PMID: 36558232 PMCID: PMC9785282 DOI: 10.3390/nano12244379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Polyarylene ether nitrile (PEN) is a novel high-performance engineering plastic with various applications, particularly in thermoresistance-required fields. In this study, a well-known stimuli-response polydiacetylene monomer, 10, 12-pentacosadiynoic acid (PCDA), was encapsulated within electrospun PEN nanofibers to fabricate a colorimetric membrane with satisfactory thermal and corrosion resistance. To optimize the compatibility with PCDA, two PENswith distinct molecular chains were utilized: PEN−PPL and PEN−BPA. The chemical structure and elemental mapping analysis revealed that the PCDA component was successfully incorporated into the PEN fibrous. The PCDA bound significantly better to the PEN−PPL than to the PEN−BPA; due to the carboxyl groups present on the side chains of PEN−PPL, the surface was smooth and the color changed uniformly as the temperature rose. However, owing to its poor compatibility with PEN−BPA, the PCDA formed agglomerations on the fibers. The thermal analysis demonstrated that the membranes obtained after PCDA compounding maintained their excellent heat resistance. The 5% weight loss temperatures of composite nanofibrous membranes manufactured by PEN−PPL and PEN−BPA were 402 °C and 506 °C, respectively, and their glass transition temperatures were 219 °C and 169 °C, respectively, indicating that the blended membranes can withstand high temperatures. The evaluation of application performance revealed that the composite membranes exhibited good dimensional stability upon high thermal and corrosive situations. Specifically, the PEN−P−PCDA did not shrink at 170 °C. Both composite membranes were dimensionally stable when exposed to the alkali aqueous solution. However, PEN−P−PCDA is more sensitive to OH−, exhibiting color transition at pH > 8, whereas PEN−B−PCDA exhibited color transition at high OH− concentrations (pH ≥ 13), with enhanced alkali resistance stability owing to its nanofibrous architecture. This exploratory study reveals the feasibility of PEN nanofibers functionalized using PCDA as a desirable stimulus-response sensor even in high-temperature and corrosive harsh environments.
Collapse
Affiliation(s)
- Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Xidi Liu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yong You
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Mengxue Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yumin Huang
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Kui Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yuxin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Qiancheng Liu
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, China
| | - Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
A review on designing nanofibers with high porous and rough surface via electrospinning technology for rapid detection of food quality and safety attributes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Song E, Lee K, Kim J. Tetrazolium-Based Visually Indicating Bacteria Sensor for Colorimetric Detection of Point of Contamination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38153-38161. [PMID: 35946791 PMCID: PMC9415389 DOI: 10.1021/acsami.2c08613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Protective equipment for detecting bacterial contamination has been in high demand with increasing interest in public health and hygiene. Herein, a fiber-based visually indicating bacteria sensor (VIBS) embedded with iodonitrotetrazolium chloride is developed for the general purpose of detecting live bacteria, and its chromogenic effectiveness is investigated for Gram-negative Escherichia coli and Gram-positive Micrococcus luteus. The developed color intensity is measured by the light absorption coefficient to the scattering coefficient (K/S) based on the Kubelka-Munk equation, and the colorimetric sensitivities of different membranes are examined by calculating the limit of detection (LOD) and the limit of quantification (LOQ). The results demonstrate that the interactions between VIBS and bacteria depend on the wetting properties of membranes. A hydrophobic membrane shows excessive interactions at high concentrations of Gram-negative E. coli bacteria, whose cell membrane is lipophilic. The membrane blended with hydrophobic and hydrophilic polymers displays linear colorimetric responses for both Gram-negative and Gram-positive bacteria strains, demonstrating a reliable sensing capability in the range of the tested bacteria concentration. This study is significant in that explorative experimentations are performed to conceive a proof of concept of a fiber-based bacteria sensor, which is readily applicable in various fields where bacteria pose a threat.
Collapse
Affiliation(s)
- Eugene Song
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
| | - Kyeongeun Lee
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Reliability
Assessment Center, FITI Testing & Research
Institute, Seoul 07791, Korea
| | - Jooyoun Kim
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Research
Institute of Human Ecology, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
13
|
Sadeghi-Avalshahr AR, Molavi AM, Nokhasteh S, Harati Z. Recent advances in fabrication of smart dressings for real-time monitoring of pH in chronic wounds—a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Siribunbandal P, Kim YH, Osotchan T, Zhu Z, Jaisutti R. Quantitative Colorimetric Detection of Dissolved Ammonia Using Polydiacetylene Sensors Enabled by Machine Learning Classifiers. ACS OMEGA 2022; 7:18714-18721. [PMID: 35694520 PMCID: PMC9178764 DOI: 10.1021/acsomega.2c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Easy-to-use and on-site detection of dissolved ammonia are essential for managing aquatic ecosystems and aquaculture products since low levels of ammonia can cause serious health risks and harm aquatic life. This work demonstrates quantitative naked eye detection of dissolved ammonia based on polydiacetylene (PDA) sensors with machine learning classifiers. PDA vesicles were assembled from diacetylene monomers through a facile green chemical synthesis which exhibited a blue-to-red color transition upon exposure to dissolved ammonia and was detectable by the naked eye. The quantitative color change was studied by UV-vis spectroscopy, and it was found that the absorption peak at 640 nm gradually decreased, and the absorption peak at 540 nm increased with increasing ammonia concentration. The fabricated PDA sensor exhibited a detection limit of ammonia below 10 ppm with a response time of 20 min. Also, the PDA sensor could be stably operated for up to 60 days by storing in a refrigerator. Furthermore, the quantitative on-site monitoring of dissolved ammonia was investigated using colorimetric images with machine learning classifiers. Using a support vector machine for the machine learning model, the classification of ammonia concentration was possible with a high accuracy of 100 and 95.1% using color RGB images captured by a scanner and a smartphone, respectively. These results indicate that using the developed PDA sensor, a simple naked eye detection for dissolved ammonia is possible with higher accuracy and on-site detection enabled by the smartphone and machine learning processes.
Collapse
Affiliation(s)
- Papaorn Siribunbandal
- Department
of Physics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand
- Research
Unit in Innovative Sensors and Nanoelectronic Devices, Thammasat University, Pathumthani 12121, Thailand
| | - Yong-Hoon Kim
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Tanakorn Osotchan
- Department
of Physics, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Zhigang Zhu
- School
of Health Science and Engineering, University
of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rawat Jaisutti
- Department
of Physics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand
- Research
Unit in Innovative Sensors and Nanoelectronic Devices, Thammasat University, Pathumthani 12121, Thailand
| |
Collapse
|
15
|
Bhattacharjee A, Sabino RM, Gangwish J, Manivasagam VK, James S, Popat KC, Reynolds M, Li YV. A novel colorimetric biosensor for detecting SARS-CoV-2 by utilizing the interaction between nucleocapsid antibody and spike proteins. IN VITRO MODELS 2022; 1:241-247. [PMID: 37519331 PMCID: PMC9156827 DOI: 10.1007/s44164-022-00022-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
SARS-CoV-2 is a pandemic coronavirus that causes severe respiratory disease (COVID-19) in humans and is responsible for millions of deaths around the world since early 2020. The virus affects the human respiratory cells through its spike (S) proteins located at the outer shell. To monitor the rapid spreading of SARS-CoV-2 and to reduce the deaths from the COVID-19, early detection of SARS-CoV-2 is of utmost necessity. This report describes a flexible colorimetric biosensor capable of detecting the S protein of SARS-CoV-2. The colorimetric biosensor is made of polyurethane (PU)-polydiacetylene (PDA) nanofiber composite that was chemically functionalized to create a binding site for the receptor molecule-nucleocapsid antibody (anti-N) protein of SARS-CoV-2. After the anti-N protein conjugation to the functionalized PDA fibers, the PU-PDA-NHS-anti fiber was able to detect the S protein of SARS-CoV-2 at room temperature via a colorimetric transition from blue to red. The PU-PDA nanofiber-based biosensors are flexible and lightweight and do not require a power supply such as a battery when the colorimetric detection to S protein occurs, suggesting a sensing platform of wearable devices and personal protective equipment such as face masks and medical gowns for real-time monitoring of virus contraction and contamination. The wearable biosensors could significantly power mass surveillance technologies to fight against the COVID-19 pandemic. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00022-z.
Collapse
Affiliation(s)
| | - Roberta M. Sabino
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO USA
| | - Justin Gangwish
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO USA
| | | | - Susan James
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
| | - Ketul C. Popat
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
| | - Melissa Reynolds
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
- Department of Chemistry, Colorado State University, Fort Collins, CO USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO USA
| | - Yan Vivian Li
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
- Department of Design and Merchandising, Colorado State University, Fort Collins, CO USA
| |
Collapse
|
16
|
Jang S, Son SU, Kang B, Kim J, Lim J, Seo S, Kang T, Jung J, Lee KS, Kim H, Lim EK. Electrospun Nanofibrous Membrane-Based Colorimetric Device for Rapid and Simple Screening of Amphetamine-Type Stimulants in Drinks. Anal Chem 2022; 94:3535-3542. [DOI: 10.1021/acs.analchem.1c04512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Soojin Jang
- BioNanotechnology Research Center, KRIBB, Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, South Korea
| | - Seong Uk Son
- BioNanotechnology Research Center, KRIBB, Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, South Korea
| | - Byunghoon Kang
- BioNanotechnology Research Center, KRIBB, Daejeon 34141, South Korea
| | - Junseok Kim
- Department of Chemistry, Incheon National University, Incheon 22012, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jaewoo Lim
- BioNanotechnology Research Center, KRIBB, Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, South Korea
| | - Seungbeom Seo
- BioNanotechnology Research Center, KRIBB, Daejeon 34141, South Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Taejoon Kang
- BioNanotechnology Research Center, KRIBB, Daejeon 34141, South Korea
| | - Juyeon Jung
- BioNanotechnology Research Center, KRIBB, Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, South Korea
| | - Kyu-Sun Lee
- BioNanotechnology Research Center, KRIBB, Daejeon 34141, South Korea
| | - Hyungjun Kim
- Department of Chemistry, Incheon National University, Incheon 22012, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, KRIBB, Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, South Korea
| |
Collapse
|
17
|
Jia Z, Müller M, Le Gall T, Riool M, Müller M, Zaat SA, Montier T, Schönherr H. Multiplexed detection and differentiation of bacterial enzymes and bacteria by color-encoded sensor hydrogels. Bioact Mater 2021; 6:4286-4300. [PMID: 33997506 PMCID: PMC8105640 DOI: 10.1016/j.bioactmat.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/12/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
We report on the fabrication and characterization of color-encoded chitosan hydrogels for the rapid, sensitive and specific detection of bacterial enzymes as well as the selective detection of a set of tested bacteria through characteristic enzyme reactions. These patterned sensor hydrogels are functionalized with three different colorimetric enzyme substrates affording the multiplexed detection and differentiation of α-glucosidase, β-galactosidase and β-glucuronidase. The limits of detection of the hydrogels for an observation time of 60 min using a conventional microplate reader correspond to concentrations of 0.2, 3.4 and 4.5 nM of these enzymes, respectively. Based on their different enzyme expression patterns, Staphylococcus aureus strain RN4220, methicillin-resistant S. aureus (MRSA) strain N315, both producing α-glucosidase, but not β-glucuronidase and β-galactosidase, Escherichia coli strain DH5α, producing β-glucuronidase and α-glucosidase, but not β-galactosidase, and the enterohemorrhagic E. coli (EHEC) strain E32511, producing β-galactosidase, but none of the other two enzymes, can be reliably and rapidly distinguished from each other. These results confirm the applicability of enzyme sensing hydrogels for the detection and discrimination of specific enzymes to facilitate differentiation of bacterial strains. Patterned hydrogels thus possess the potential to be further refined as detection units of a multiplexed format to identify certain bacteria for future application in point-of-care microbiological diagnostics in food safety and medical settings.
Collapse
Affiliation(s)
- Zhiyuan Jia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078 GGFB, F-29200, Brest, France
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Max Müller
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078 GGFB, F-29200, Brest, France
- CHRU de Brest, Service de génétique médicale et de biologie de la reproduction, Centre de Référence des Maladies Rares « Maladies neuromusculaires », F-29200, Brest, France
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| |
Collapse
|
18
|
Zhao J, Sugihara K. Analysis of PDA Dose Curves for the Extraction of Antimicrobial Peptide Properties. J Phys Chem B 2021; 125:12206-12213. [PMID: 34706534 DOI: 10.1021/acs.jpcb.1c07533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A mechanochromic polymer, polydiacetylene, changes color upon ligand binding, being a popular material in biosensing. However, whether it can also detect ligand functions in addition to binding is left understudied. In this work, we report that the polydiacetylene can be used to determine the net charges and the mode of actions (carpet model, toroidal pore model, etc.) of antimicrobial peptides and detergents via EC50 and Hill coefficients from the colorimetric response-dose curves. This opens a potential for high-throughput peptide screening by functions, which is difficult with the conventional methods.
Collapse
Affiliation(s)
- Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - Kaori Sugihara
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
19
|
Electrospun nanofibers as food freshness and time-temperature indicators: A new approach in food intelligent packaging. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102804] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Alam AKMM, Jenks D, Kraus GA, Xiang C. Synthesis, Fabrication, and Characterization of Functionalized Polydiacetylene Containing Cellulose Nanofibrous Composites for Colorimetric Sensing of Organophosphate Compounds. NANOMATERIALS 2021; 11:nano11081869. [PMID: 34443700 PMCID: PMC8399134 DOI: 10.3390/nano11081869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023]
Abstract
Organophosphate (OP) compounds, a family of highly hazardous chemical compounds included in nerve agents and pesticides, have been linked to more than 250,000 annual deaths connected to various chronic diseases. However, a solid-state sensing system that is able to be integrated into a clothing system is rare in the literature. This study aims to develop a nanofiber-based solid-state polymeric material as a soft sensor to detect OP compounds present in the environment. Esters of polydiacetylene were synthesized and incorporated into a cellulose acetate nanocomposite fibrous assembly developed with an electrospinning technique, which was then hydrolyzed to generate more hydroxyl groups for OP binding. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Instron® tensile tester, contact angle analyzer, and UV–Vis spectroscopy were employed for characterizations. Upon hydrolysis, polydiacetylene esters in the cellulosic fiber matrix were found unaffected by hydrolysis treatment, which made the composites suitable for OP sensing. Furthermore, the nanofibrous (NF) composites exhibited tensile properties suitable to be used as a textile material. Finally, the NF composites exhibited colorimetric sensing of OP, which is visible to the naked eye. This research is a landmark study toward the development of OP sensing in a protective clothing system.
Collapse
Affiliation(s)
- A K M Mashud Alam
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50011, USA; or
| | - Donovan Jenks
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; (D.J.); (G.A.K.)
| | - George A. Kraus
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; (D.J.); (G.A.K.)
| | - Chunhui Xiang
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50011, USA; or
- Correspondence: ; Tel.: +1-(515)294-7515
| |
Collapse
|
21
|
Structures and strategies for enhanced sensitivity of polydiacetylene(PDA) based biosensor platforms. Biosens Bioelectron 2021; 181:113120. [PMID: 33714858 DOI: 10.1016/j.bios.2021.113120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Polydiacetylene (PDA) is a versatile polymer that has been studied in numerous fields because of its unique optical properties derived from alternating multiple bonds in the polymer backbone. The conjugated structure in the polymer backbone enables PDA to possess the ability of blue-red colorimetric transition when π-π interactions in the PDA backbone chain are disturbed by the external environment. The chromatic property of PDA disturbed by external stimuli can also emit fluorescence in the red region. Owing to the unique characteristics of PDA, it has been widely studied in facile and label-free sensing applications based on colorimetric or fluorescence signals for several decades. Among the various PDA structures, membrane structures assembled by amphiphilic molecules are widely used as a versatile platform because facile modification of the synthetic membrane provides extensive applications, such as receptor-ligand interactions, resulting in potent biosensors. To use PDA as a sensory material, several methods have been studied to endow the specificity to PDA molecules and to amplify the signal from PDA supramolecules. This is because selective and sensitive detection of target materials is required at an appropriate level corresponding to each material for applicable sensor applications. This review focuses on factors that affect the sensitivity of PDA composites and several strategies to enhance the sensitivity of the PDA sensor to various structures. Owing to these strategies, the PDA sensor system has achieved a higher level of sensitivity and selectivity, enabling it to detect multiple target materials for a full field of application.
Collapse
|
22
|
Hall AV, Musa OM, Hood DK, Apperley DC, Yufit DS, Steed JW. Alkali Metal Salts of 10,12-Pentacosadiynoic Acid and Their Dosimetry Applications. CRYSTAL GROWTH & DESIGN 2021. [PMID: 34054354 DOI: 10.1021/acs.cgd.1c00300] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wide-dose-range 2D radiochromic films for radiotherapy, such as GAFchromic EBT, are based on the lithium salt of 10,12-pentacosadiynoic acid (Li-PCDA) as the photosensitive component. We show that there are two solid forms of Li-PCDA-a monohydrated form A and an anhydrous form B. The form used in commercial GAFchromic films is form A due to its short needle-shaped crystals, which provide favorable coating properties. Form B provides an enhanced photoresponse compared to that of form A, but adopts a long needle crystal morphology, which is difficult to process. The two forms were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, CP-MAS 13C solid-state NMR spectroscopy, and thermogravimetric analysis. In sum, these data suggest a chelating bridging bidentate coordination mode for the lithium ions. The sodium salt of PCDA (Na-PCDA) is also reported, which is an ionic cocrystal with a formula of Na+PCDA-·3PCDA. The PCDA and PCDA- ligands display monodentate and bridging bidentate coordination to the sodium ion in contrast to the coordination sphere of the Li-PCDA forms. In contrast to its lithium analogues, Na-PCDA is photostable.
Collapse
Affiliation(s)
- Amy V Hall
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| | - Osama M Musa
- Ashland LLC, 1005 Route 202/206, Bridgewater, New Jersey 08807, United States
| | - David K Hood
- Ashland LLC, 1005 Route 202/206, Bridgewater, New Jersey 08807, United States
| | - David C Apperley
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| | - Dmitry S Yufit
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| | - Jonathan W Steed
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| |
Collapse
|
23
|
Currie S, Shariatzadeh FJ, Singh H, Logsetty S, Liu S. Highly Sensitive Bacteria-Responsive Membranes Consisting of Core-Shell Polyurethane Polyvinylpyrrolidone Electrospun Nanofibers for In Situ Detection of Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45859-45872. [PMID: 32967419 DOI: 10.1021/acsami.0c14213] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacteria responsive color-changing wound dressings offer a valuable platform for continuous monitoring of the wound bed facilitating early detection of bacterial infections. In this study, we present a highly sensitive electrospun nanofibrous polyurethane wound dressing incorporating a hemicyanine-based chromogenic probe with a labile ester linkage that can be enzymatically cleaved by bacterial lipase released from clinically relevant strains, such as Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA). A rapid chromogenic response was achieved by localizing the dye at the surface of core-shell fibers, resulting in a 5x faster response relative to conventional nanofibers. By incorporating polyvinylpyrrolidone (PVP) dopant in the shell, the sensitivity was boosted to enable detection of bacteria at clinically relevant concentrations after 2 h exposure: 2.5 × 105 CFU/cm2 P. aeruginosa and 1.0 × 106 CFU/cm2 MRSA. Introduction of PVP in the shell also boosted the degree of hydrolysis of the chromogenic probe by a factor of 1.2× after a 3 h exposure to a low concentration of P. aeruginosa (105 CFU/cm2). PVP was also found to improve the discernibility of the color change at high bacterial concentrations. The co-operativity between the chromogenic probe, fiber structure, and polymer composition is well-suited for timely in situ detection of wound infection.
Collapse
Affiliation(s)
- Sarah Currie
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | - Hardev Singh
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab 140413, India
| | - Sarvesh Logsetty
- Departments of Surgery, Psychiatry, Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| | - Song Liu
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
24
|
Application trends of nanofibers in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115992
expr 834212330 + 887677890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
25
|
|
26
|
Alam AKMM, Ewaldz E, Xiang C, Qu W, Bai X. Tunable Wettability of Biodegradable Multilayer Sandwich-Structured Electrospun Nanofibrous Membranes. Polymers (Basel) 2020; 12:polym12092092. [PMID: 32942521 PMCID: PMC7569968 DOI: 10.3390/polym12092092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
This research aims to develop multilayer sandwich-structured electrospun nanofiber (ENF) membranes using biodegradable polymers. Hydrophilic regenerated cellulose (RC) and hydrophobic poly (lactic acid) (PLA)-based novel multilayer sandwich-structures were created by electrospinning on various copper collectors, including copper foil and 30-mesh copper gauzes, to modify the surface roughness for tunable wettability. Different collectors yielded various sizes and morphologies of the fabricated ENFs with different levels of surface roughness. Bead-free thicker fibers were collected on foil collectors. The surface roughness of the fine fibers collected on mesh collectors contributed to an increase in hydrophobicity. An RC-based triple-layered structure showed a contact angle of 48.2°, which is comparable to the contact angle of the single-layer cellulosic fabrics (47.0°). The polar shift of RC membranes on the wetting envelope is indicative of the possibility of tuning the wetting behavior by creating multilayer structures. Wettability can be tuned by creating multilayer sandwich structures consisting of RC and PLA. This study provides an important insight into the manipulation of the wetting behavior of polymeric ENFs in multilayer structures for applications including chemical protective clothing.
Collapse
Affiliation(s)
- A. K. M. Mashud Alam
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50011, USA;
| | - Elena Ewaldz
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Chunhui Xiang
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50011, USA;
- Correspondence: ; Tel.: +1-515-294-7515
| | - Wangda Qu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (W.Q.); (X.B.)
| | - Xianglan Bai
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (W.Q.); (X.B.)
| |
Collapse
|
27
|
Nguyen LH, Oveissi F, Chandrawati R, Dehghani F, Naficy S. Naked-Eye Detection of Ethylene Using Thiol-Functionalized Polydiacetylene-Based Flexible Sensors. ACS Sens 2020; 5:1921-1928. [PMID: 32551585 DOI: 10.1021/acssensors.0c00117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ethylene is a hormone that plays a critical role in many phases of plant growth and fruit ripening. Currently, detection of ethylene heavily relies on sophisticated and time-consuming conventional assays such as chromatography, spectroscopy, and electrochemical methods. Herein, we develop a polydiacetylene-based sensor for the detection of ethylene via color change. The sensors are prepared through the reaction between polydiacetylene and Lawesson's reagent that results in decorating polydiacetylene with terminal thiol groups. Upon exposure to ethylene, the sensor changes color from blue to red which is visible to the naked eye. Our device shows a limit of detection for ethylene at 600 ppm in air and can be applied for monitoring ethylene released during the fruit-ripening process. Such easy-to-use ethylene sensors may find applications in plant biology, agriculture, and food industry.
Collapse
Affiliation(s)
- Long H. Nguyen
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Farshad Oveissi
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
28
|
Hall AV, Yufit DS, Apperley DC, Senak L, Musa OM, Hood DK, Steed JW. The crystal engineering of radiation-sensitive diacetylene cocrystals and salts. Chem Sci 2020; 11:8025-8035. [PMID: 34094171 PMCID: PMC8163068 DOI: 10.1039/d0sc02540b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/18/2020] [Indexed: 01/01/2023] Open
Abstract
In this work we develop photoreactive cocrystals/salts of a commercially-important diacetylene, 10,12-pentacosadiynoic acid (PCDA, 1) and report the first X-ray crystal structures of PCDA based systems. The topochemical reactivity of the system is modified depending on the coformer used and correlates with the structural parameters. Crystallisation of 1 with 4,4'-azopyridine (2), 4,4'-bipyridyl (3), and trans-1,2-bis(4-pyridyl)ethylene (4) results in unreactive 2 : 1 cocrystals or a salt in the case of 4,4'-bipiperidine (5). However, salt formation with morpholine (6), diethylamine (7), and n-butylamine (8), results in highly photoreactive salts 12·7 and 1·8 whose reactivity can be explained using topochemical criteria. The salt 1·6 is also highly photoreactive and is compared to a model morpholinium butanoate salt. Resonance Raman spectroscopy reveals structural details of the photopolymer including its conformational disorder in comparison to less photoactive alkali metal salts and the extent of solid state conversion can be monitored by CP-MAS NMR spectroscopy. We also report an unusual catalysis in which amine evaporation from photopolymerised PCDA ammonium salts effectively acts as a catalyst for polymerisation of PCDA itself. The new photoreactive salts exhibit more reactivity but decreased conjugation compared to the commercial lithium salt and are of considerable practical potential in terms of tunable colours and greater range in UV, X-ray, and γ-ray dosimetry applications.
Collapse
Affiliation(s)
- Amy V Hall
- Durham University, Department of Chemistry Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| | - Dmitry S Yufit
- Durham University, Department of Chemistry Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| | - David C Apperley
- Durham University, Department of Chemistry Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| | - Larry Senak
- Ashland LLC 1005 Route 202/206 Bridgewater NJ 08807 USA
| | - Osama M Musa
- Ashland LLC 1005 Route 202/206 Bridgewater NJ 08807 USA
| | - David K Hood
- Ashland LLC 1005 Route 202/206 Bridgewater NJ 08807 USA
| | - Jonathan W Steed
- Durham University, Department of Chemistry Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| |
Collapse
|
29
|
Ardila-Diaz LD, de Oliveira TV, Soares NDFF. Development and Evaluation of the Chromatic Behavior of an Intelligent Packaging Material Based on Cellulose Acetate Incorporated with Polydiacetylene for an Efficient Packaging. BIOSENSORS 2020; 10:E59. [PMID: 32486501 PMCID: PMC7345045 DOI: 10.3390/bios10060059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/12/2023]
Abstract
Global growth of the food industry and the demand for new products with natural characteristics, safe conditions and traceability have driven researches for the development of technologies such as intelligent packaging, capable to fulfil those needs. Polydiacetylene (PDA) is a synthetic material that has been highlighted in research field as a sensor substance, which can be used to produce intelligent packaging capable to detect chemical or biochemical changes in foods and in their environment due to PDA's color transition from blue to red. This work focused on the development and optimization of an intelligent packaging constituted of a polymeric matrix of cellulose acetate-based incorporated with PDA as the substance sensor. Cellulose acetate films (3% wt.) were developed by a casting method, and the amounts of triethyl citrate plasticizer (TEC) (0-25% wt. of cellulose-acetate) and PDA (0-60 mg) were analyzed to optimize the conditions for the best color transitioning at this study range. The compound amounts incorporated into polymeric matrices were established according to Central Composite Designs (CCD). Three more design variables were analyzed, such as the polymerization time of PDA under UV light exposition (0-60 min), pH values (4-11) and temperature exposure on the film (0-100 °C), important factors on the behavior of PDA's color changing. In this study, film thickness and film color coordinates were measured in order to study the homogeneity and the color transitioning of PDA films under different pH and temperature conditions, with the purpose of maximizing the color changes through the optimization of PDA and TEC concentrations into the cellulose acetate matrix and the polymerization degree trigged by UV light irradiation. The optimal film conditions were obtained by adding 50.48 g of PDA and 10% of TEC, polymerization time of 18 min under UV light, at 100 °C ± 2 °C of temperature exposure. The changes in pH alone did not statistically influence the color coordinates measured at the analyzed ratio; however, variations in pH associated with other factors had a significant effect on visual color changes, and observations were described. PDA films were optimized to maximize color change in order to obtain a cheap and simple technology to produce intelligent packaging capable to monitor food products along the distribution chain in real time, improving the food quality control and consumer safety.
Collapse
Affiliation(s)
- Lina D. Ardila-Diaz
- Program of Agroindustrial Engineering, Faculty of Agricultural Engineering, Universidad del Tolima, Ibagué-Tolima 730006299, Colombia
- Packaging Laboratory, Department of Food Technology, Universidade Federal de Viçosa, Viçosa-MG 36570-900, Brazil; (T.V.d.O.); (N.d.F.F.S.)
| | - Taíla V. de Oliveira
- Packaging Laboratory, Department of Food Technology, Universidade Federal de Viçosa, Viçosa-MG 36570-900, Brazil; (T.V.d.O.); (N.d.F.F.S.)
| | - Nilda de F. F. Soares
- Packaging Laboratory, Department of Food Technology, Universidade Federal de Viçosa, Viçosa-MG 36570-900, Brazil; (T.V.d.O.); (N.d.F.F.S.)
| |
Collapse
|
30
|
|
31
|
Gwon YJ, Lee JJ, Lee KW, Ogden MD, Harwood LM, Lee TS. Prussian Blue Decoration on Polyacrylonitrile Nanofibers Using Polydopamine for Effective Cs Ion Removal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Young Jin Gwon
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Jeong Jun Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Kune-Woo Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Mark D. Ogden
- Separations and Nuclear Chemical Engineering Research, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Laurence M. Harwood
- Department of Chemistry, University of Reading, Reading, RG6 6AH, United Kingdom
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
32
|
Recent progress on designing electrospun nanofibers for colorimetric biosensing applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Advances in Fabrication of Polydiacetylene Vesicles and Their Applications in Medical Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(19)61213-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Weston M, Tjandra AD, Chandrawati R. Tuning chromatic response, sensitivity, and specificity of polydiacetylene-based sensors. Polym Chem 2020. [DOI: 10.1039/c9py00949c] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we provide an overview of six major techniques to tune the sensitivity and specificity of polydiacetylene-based sensors.
Collapse
Affiliation(s)
- Max Weston
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN)
- The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| | - Angie Davina Tjandra
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN)
- The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN)
- The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| |
Collapse
|
35
|
Azzouz A, Vikrant K, Kim KH, Ballesteros E, Rhadfi T, Malik AK. Advances in colorimetric and optical sensing for gaseous volatile organic compounds. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Study on microstructure and mechanical properties of polydiacetylene composite biosensors. J Appl Polym Sci 2019. [DOI: 10.1002/app.47877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Elistratova YG, Akhmadeev BS, Gimazetdinova GS, Podyachev SN, Mustafina AR. Substrate-induced luminescence response of terbium-containing polymeric vesicles doped with the tetra- and bis-1,3-diketone derivatives of calix[4]arenes bearing nonyl substituents at the lower rims. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2398-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Mapazi O, Matabola KP, Moutloali RM, Ngila CJ. High temperature thermochromic polydiacetylene supported on polyacrylonitrile nanofibers. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|