1
|
Halat M, Klimek-Chodacka M, Domagała A, Zając G, Oleszkiewicz T, Kapitán J, Baranski R. Chiral sensing combined with nuclease activity assay to track Cas9 dynamics in solution: ROA and CPL study. Chem Commun (Camb) 2025. [PMID: 40231554 DOI: 10.1039/d5cc00971e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Chiroptical studies of the SpyCas9 protein are extremely rare. Nondestructive methods are needed to characterize its active ribonucleoprotein form. Using Raman optical activity (ROA) and circularly polarized luminescence (CPL), we present a new approach to detect key biomolecules involved in CRISPR-Cas technology while preserving their original nucleolytic activity.
Collapse
Affiliation(s)
- Monika Halat
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. Mickiewicza 21, 31-120 Krakow, Poland.
| | - Magdalena Klimek-Chodacka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. Mickiewicza 21, 31-120 Krakow, Poland.
| | - Agnieszka Domagała
- Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, 30-348 Krakow, Poland
| | - Grzegorz Zając
- Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Tomasz Oleszkiewicz
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. Mickiewicza 21, 31-120 Krakow, Poland.
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Rafal Baranski
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. Mickiewicza 21, 31-120 Krakow, Poland.
| |
Collapse
|
2
|
Michaelis M, Cupellini L, Mensch C, Perry CC, Delle Piane M, Colombi Ciacchi L. Tidying up the conformational ensemble of a disordered peptide by computational prediction of spectroscopic fingerprints. Chem Sci 2023; 14:8483-8496. [PMID: 37592980 PMCID: PMC10430726 DOI: 10.1039/d3sc02202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
The most advanced structure prediction methods are powerless in exploring the conformational ensemble of disordered peptides and proteins and for this reason the "protein folding problem" remains unsolved. We present a novel methodology that enables the accurate prediction of spectroscopic fingerprints (circular dichroism, infrared, Raman, and Raman optical activity), and by this allows for "tidying up" the conformational ensembles of disordered peptides and disordered regions in proteins. This concept is elaborated for and applied to a dodecapeptide, whose spectroscopic fingerprint is measured and theoretically predicted by means of enhanced-sampling molecular dynamics coupled with quantum mechanical calculations. Following this approach, we demonstrate that peptides lacking a clear propensity for ordered secondary-structure motifs are not randomly, but only conditionally disordered. This means that their conformational landscape, or phase-space, can be well represented by a basis-set of conformers including about 10 to 100 structures. The implications of this finding have profound consequences both for the interpretation of experimental electronic and vibrational spectral features of peptides in solution and for the theoretical prediction of these features using accurate and computationally expensive techniques. The here-derived methods and conclusions are expected to fundamentally impact the rationalization of so-far elusive structure-spectra relationships for disordered peptides and proteins, towards improved and versatile structure prediction methods.
Collapse
Affiliation(s)
- Monika Michaelis
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via G. Moruzzi 13 Pisa I-56124 Italy
| | - Carl Mensch
- Molecular Spectroscopy Research Group, Department of Chemistry, University of Antwerp Groenenborgerlaan 171 Antwerp 2020 Belgium
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Massimo Delle Piane
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 Torino 10129 Italy
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
| |
Collapse
|
3
|
Avni A, Joshi A, Walimbe A, Pattanashetty SG, Mukhopadhyay S. Single-droplet surface-enhanced Raman scattering decodes the molecular determinants of liquid-liquid phase separation. Nat Commun 2022; 13:4378. [PMID: 35902591 PMCID: PMC9334365 DOI: 10.1038/s41467-022-32143-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Biomolecular condensates formed via liquid-liquid phase separation (LLPS) are involved in a myriad of critical cellular functions and debilitating neurodegenerative diseases. Elucidating the role of intrinsic disorder and conformational heterogeneity of intrinsically disordered proteins/regions (IDPs/IDRs) in these phase-separated membrane-less organelles is crucial to understanding the mechanism of formation and regulation of biomolecular condensates. Here we introduce a unique single-droplet surface-enhanced Raman scattering (SERS) methodology that utilizes surface-engineered, plasmonic, metal nanoparticles to unveil the inner workings of mesoscopic liquid droplets of Fused in Sarcoma (FUS) in the absence and presence of RNA. These highly sensitive measurements offer unprecedented sensitivity to capture the crucial interactions, conformational heterogeneity, and structural distributions within the condensed phase in a droplet-by-droplet manner. Such an ultra-sensitive single-droplet vibrational methodology can serve as a potent tool to decipher the key molecular drivers of biological phase transitions of a wide range of biomolecular condensates involved in physiology and disease. The authors introduce a unique single-droplet surface-enhanced Raman scattering (SERS) methodology that illuminates a wealth of molecular information within the mesoscopic liquid condensed phase of Fused in Sarcoma in the absence and presence of RNA.
Collapse
Affiliation(s)
- Anamika Avni
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Anuja Walimbe
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Swastik G Pattanashetty
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India. .,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
4
|
Zhao Y, Zhang J, Gouda M, Zhang C, Lin L, Nie P, Ye H, Huang W, Ye Y, Zhou C, He Y. Structure analysis and non-invasive detection of cadmium-phytochelatin2 complexes in plant by deep learning Raman spectrum. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128152. [PMID: 35033726 DOI: 10.1016/j.jhazmat.2021.128152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Plants synthesize phytochelatins to chelate in vivo toxic heavy metal ions and produce nontoxic complexes for tolerating the stress. Detection of the complexes would simplify the identification of high phytoremediation cultivars, as well as assessment of plant food for safe consumption. Thus, a confocal Raman spectroscopy combined with density functional theory and deep learning was used for characterizing phytochelatin2 (PC2), and Cd-PC2 mixtures. Results showed the PC2 chelate Cd2+ in a 2:1 ratio to produce Cd(PC2)2; Cd-S bonds of the Cd(PC2)2 have signature Raman vibrations at 305 and 610 cm-1 which are the most distinctive spectral signatures for varieties of Cd-PCs complexes. The PC2 was used as a natural probe to stabilize the chemical status of Cd, and to enrich and magnify Raman signature of the trace Cd for deep learning models which enabled condition of the Cd(PC2)2 in pak choi leaf to be visualized, quantified, and classified by directly using raw spectra of the leaf. This study provides a general protocol by using Raman information for structure analysis and non-invasive detection of heavy metal-PCs complexes in plants and provides a novel idea for simplifying identification of high phytoremediation cultivars, as well as assessment of heavy metal related food safeties.
Collapse
Affiliation(s)
- Yinglei Zhao
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, 310000 Hangzhou, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Jinnuo Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Nutrition & Food Science, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Chenghao Zhang
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, 310000 Hangzhou, China
| | - Lei Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Hongbao Ye
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, 310000 Hangzhou, China
| | - Wei Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yunxiang Ye
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, 310000 Hangzhou, China
| | - Chengquan Zhou
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, 310000 Hangzhou, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China.
| |
Collapse
|
5
|
Aerts R, Vanhove J, Herrebout W, Johannessen C. Paving the way to conformationally unravel complex glycopeptide antibiotics by means of Raman optical activity. Chem Sci 2021; 12:5952-5964. [PMID: 35342545 PMCID: PMC8867523 DOI: 10.1039/d1sc01446c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
It is crucial for fundamental physical chemistry techniques to find their application in tackling real-world challenges. Hitherto, Raman optical activity (ROA) spectroscopy is one of the examples where a promising future within the pharmaceutical sector is foreseen, but has not yet been established. Namely, the technique is believed to be able to contribute in investigating the conformational behaviour of drug candidates. We, herein, strive towards the alignment of the ROA analysis outcome and the pharmaceutical expectations by proposing a fresh strategy that ensures a more complete, reliable, and transferable ROA study. The strategy consists of the treatment of the conformational space by means of a principal component analysis (PCA) and a clustering algorithm, succeeded by a thorough ROA spectral analysis and a novel way of estimating the contributions of the different chemical fragments to the total ROA spectral intensities. Here, vancomycin, an antibiotic glycopeptide, has been treated; it is the first antibiotic glycopeptide studied by means of ROA and is a challenging compound in ROA terms. By applying our approach we discover that ROA is capable of independently identifying the correct conformation of vancomycin in aqueous solution. In addition, we have a clear idea of what ROA can and cannot tell us regarding glycopeptides. Finally, the glycopeptide class turns out to be a spectroscopically curious case, as its spectral responses are unlike the typical ROA spectral responses of peptides and carbohydrates. This preludes future ROA studies of this intriguing molecular class.
Collapse
Affiliation(s)
- Roy Aerts
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| | - Jente Vanhove
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| | - Christian Johannessen
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| |
Collapse
|
6
|
Singh S, Agarwal A, Avni A, Mukhopadhyay S. Ultrasensitive Characterization of the Prion Protein by Surface-Enhanced Raman Scattering: Selective Enhancement via Electrostatic Tethering of the Intrinsically Disordered Domain with Functionalized Silver Nanoparticles. J Phys Chem Lett 2021; 12:3187-3194. [PMID: 33759537 DOI: 10.1021/acs.jpclett.1c00240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface-enhanced Raman scattering (SERS) circumvents the inherent insensitivity of Raman spectroscopy and offers a powerful tool for the ultrasensitive detection and characterization of biomolecules at low concentrations. Here we show that SERS via electrostatic tethering between surface-modified negatively charged silver nanoparticles and highly positively charged intrinsically disordered N-terminal domain of the prion protein allows highly sensitive and reproducible protein detection and characterization at as low as hundreds of nanomolar protein concentrations. These measurements preferentially illuminate a selective part of the protein due to a sharp dependence of the near-field intensity on the distance between the nanoparticle surface and the protein. We also demonstrate that by shortening the length of the disordered tail it is possible to achieve a domain-selective Raman enhancement to study the C-terminal globular domain. Our tether-length-dependent SERS methodology will serve as a potent, noninvasive, and label-free strategy to detect and characterize a wide range of proteins possessing disordered segments.
Collapse
|
7
|
Bogaerts J, Atilaw Y, Peintner S, Aerts R, Kihlberg J, Johannessen C, Erdélyi M. Employing complementary spectroscopies to study the conformations of an epimeric pair of side-chain stapled peptides in aqueous solution. RSC Adv 2021; 11:4200-4208. [PMID: 35424346 PMCID: PMC8694311 DOI: 10.1039/d0ra10167b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the conformational preferences of free ligands in solution is often necessary to rationalize structure-activity relationships in drug discovery. Herein, we examine the conformational behavior of an epimeric pair of side-chain stapled peptides that inhibit the FAD dependent amine oxidase lysine specific demethylase 1 (LSD1). The peptides differ only at a single stereocenter, but display a major difference in binding affinity. Their Raman optical activity (ROA) spectra are most likely dominated by the C-terminus, obscuring the analysis of the epimeric macrocycle. By employing NMR spectroscopy, we show a difference in conformational behavior between the two compounds and that the LSD1 bound conformation of the most potent compound is present to a measurable extent in aqueous solution. In addition, we illustrate that Molecular Dynamics (MD) simulations produce ensembles that include the most important solution conformations, but that it remains problematic to identify relevant conformations with no a priori knowledge from the large conformational pool. Furthermore, this work highlights the importance of understanding the scope and limitations of the available techniques for conducting conformational analyses. It also emphasizes the importance of conformational selection of a flexible ligand in molecular recognition.
Collapse
Affiliation(s)
| | - Yoseph Atilaw
- Department of Chemistry - BMC, Uppsala University SE-751 23 Uppsala Sweden
| | - Stefan Peintner
- Department of Chemistry - BMC, Uppsala University SE-751 23 Uppsala Sweden
| | - Roy Aerts
- Department of Chemistry, University of Antwerp 2020 Antwerp Belgium
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University SE-751 23 Uppsala Sweden
| | | | - Máté Erdélyi
- Department of Chemistry - BMC, Uppsala University SE-751 23 Uppsala Sweden
| |
Collapse
|
8
|
Vermeyen T, Merten C. Solvation and the secondary structure of a proline-containing dipeptide: insights from VCD spectroscopy. Phys Chem Chem Phys 2020; 22:15640-15648. [PMID: 32617548 DOI: 10.1039/d0cp02283g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study we investigate the IR and VCD spectra of the diastereomeric dipeptide Boc-Pro-Phe-(n-propyl) 1 in chloroform-d1 (CDCl3) and the strongly hydrogen bonding solvent dimethylsulfoxide-d6 (DMSO-d6). From comparison of the experimental spectra, the amide II spectral region is identified as marker signature for the stereochemistry of the dipeptide: the homochiral LL-1 features a (+/-)-pattern in the amide II region of the VCD spectrum, while the amide II signature of the diastereomer LD-1 is inverted. Computational analysis of the IR and VCD spectra of LL-1 reveals that the experimentally observed amide II signature is characteristic for a βI-turn structure of the peptide. Likewise, the inverted pattern found for LD-1 arises from a βII-turn structure of the dipeptide. Following a micro-solvation approach, the experimental spectra recorded in DMSO-d6 are computationally well reproduced by considering only a single solvent molecule in a hydrogen bond with N-H groups. Considering a second solvent molecule, which would lead to a cleavage of intramolecular hydrogen bonds in 1, is found to give a significantly worse match with the experiment. Hence, the detailed computational analysis of the spectra of LL- and LD-1 recorded in DMSO-d6 confirms that the intramolecular hydrogen bonding pattern, that stabilizes the β-turns and other conformations of LL- and LD-1 in apolar solvents, remains intact. Our findings also show that it is essential to consider solvation explicitly in the analysis of the IR and VCD spectra of dipeptides in strongly hydrogen bonding solvents. As the solute-solvent interactions affect both conformational preferences and spectral signatures, it is also demonstrated that this inclusion of solvent molecules cannot be circumvented by applying fitting procedures to non-solvated structures.
Collapse
Affiliation(s)
- Tom Vermeyen
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany. and University of Antwerp, Department of Chemistry, MolSpec Group, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
9
|
Mensch C, Bultinck P, Johannessen C. The effect of protein backbone hydration on the amide vibrations in Raman and Raman optical activity spectra. Phys Chem Chem Phys 2019; 21:1988-2005. [PMID: 30633268 DOI: 10.1039/c8cp06423g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman and specifically Raman optical activity (ROA) spectroscopy are very sensitive to the solution structure and conformation of biomolecules. Because of this strong conformational sensitivity, density functional theory (DFT) calculations are often used to get a better understanding of the experimentally observed spectral patterns. While e.g. for carbohydrate structure the water molecules that surround the solute have been demonstrated to be of vital importance to get accurate modelled ROA spectra, the effect of explicit water molecules on the calculated ROA patterns of peptides and proteins is less well studied. Here, the effect of protein backbone hydration was studied using DFT calculations of HCO-(l-Ala)5-NH2 in specific secondary structure conformations with different treatments of the solvation. The effect of the explicit water molecules on the calculated spectra mainly arises from the formation of hydrogen bonds with the amide C[double bond, length as m-dash]O and N-H groups. Hydrogen bonding of water with the C[double bond, length as m-dash]O group determines the shape and position of the amide I band. The C[double bond, length as m-dash]O bond length increases upon formation of C[double bond, length as m-dash]OH2O hydrogen bonds. The effect of the explicit water molecules on the amide III vibrations arises from hydrogen bonding of the solvent with both the C[double bond, length as m-dash]O and N-H group, but their contributions to this spectral region differ: geometrically, the formation of a C[double bond, length as m-dash]OH2O bond decreases the C-N bond length, while upon forming a N-HH2O hydrogen bond, the N-H bond length increases.
Collapse
Affiliation(s)
- Carl Mensch
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | |
Collapse
|
10
|
Van de Vondel E, Herrebout W, Johannessen C. Tracking Conformational Changes in Phosvitin throughout a Crowding-Agent-Based Titration. Chembiochem 2019; 20:770-777. [PMID: 30451361 DOI: 10.1002/cbic.201800581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 11/11/2022]
Abstract
The sensitivity of Raman optical activity (ROA) towards small conformational changes is explored by tracking the structural changes in an intrinsically disordered protein-phosvitin-induced by different concentrations of crowding agent. It is shown that ROA is capable of tracking small conformational changes involving β-sheet and α-helical secondary structural properties of the protein. Furthermore, it is indicated that the influences of the crowding agents employed, Ficoll 70 and dextran 70, on the structural properties of phosvitin differ significantly, with the structural changes induced by the presence of Ficoll 70 being more pronounced and already being visible at a lower concentration. The data also suggest that some spectral changes do not arise from a change in the secondary structure of the protein, but are related to differences in interaction between the phosphorylated residues of the protein and the sugar-based crowding agent.
Collapse
Affiliation(s)
- Evelien Van de Vondel
- Molecular Spectroscopy Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Wouter Herrebout
- Molecular Spectroscopy Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Christian Johannessen
- Molecular Spectroscopy Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|