1
|
Dey K, Jayaraman N. Trivalent dialkylaminopyridine-catalyzed site-selective mono- O-acylation of partially-protected pyranosides. Org Biomol Chem 2024; 22:5134-5149. [PMID: 38847370 DOI: 10.1039/d4ob00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This work demonstrates trivalent tris-(3-N-methyl-N-pyridyl propyl)amine (1) catalyzing the site-selective mono-O-acylation of glycopyranosides. Different acid anhydrides were used for the acylation of monosaccharides, mediated by catalyst 1, at a loading of 1.5 mol%; the extent of site-selectivity and the yields of mono-O-acylation products were assessed. The reactions were performed between 2 and 10 h, depending on the nature of the acid anhydride, where the bulkier pivalic anhydride required a longer duration for acylation. The glycopyranosides are maintained as diols and triols, and from a set of experiments, the site-selectivity of acylations was observed to follow the intrinsic reactivities and stereochemistry of hydroxy functionalities. The trivalent catalyst 1 mediates the reactions with excellent site-selectivities for mono-O-acylation product formation in the studied glycopyranosides, in comparison to the monovalent N,N-dimethylamino pyridine (DMAP) catalyst. This study illustrates the benefits of the multivalency of catalytic moieties in catalysis.
Collapse
Affiliation(s)
- Kalyan Dey
- Indian Institute of Science, Bangalore 560012, India.
| | | |
Collapse
|
2
|
Faurschou NV, Taaning RH, Pedersen CM. Substrate specific closed-loop optimization of carbohydrate protective group chemistry using Bayesian optimization and transfer learning. Chem Sci 2023; 14:6319-6329. [PMID: 37325141 PMCID: PMC10266441 DOI: 10.1039/d3sc01261a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
A new way of performing reaction optimization within carbohydrate chemistry is presented. This is done by performing closed-loop optimization of regioselective benzoylation of unprotected glycosides using Bayesian optimization. Both 6-O-monobenzoylations and 3,6-O-dibenzoylations of three different monosaccharides are optimized. A novel transfer learning approach, where data from previous optimizations of different substrates is used to speed up the optimizations, has also been developed. The optimal conditions found by the Bayesian optimization algorithm provide new insight into substrate specificity, as the conditions found are significantly different. In most cases, the optimal conditions include Et3N and benzoic anhydride, a new reagent combination for these reactions, discovered by the algorithm, demonstrating the power of this concept to widen the chemical space. Further, the developed procedures include ambient conditions and short reaction times.
Collapse
|
3
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Williams OP, Chmiel AF, Mikhael M, Bates DM, Yeung CS, Wickens ZK. Practical and General Alcohol Deoxygenation Protocol. Angew Chem Int Ed Engl 2023; 62:e202300178. [PMID: 36840940 PMCID: PMC10121858 DOI: 10.1002/anie.202300178] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Herein, we describe a practical protocol for the removal of alcohol functional groups through reductive cleavage of their benzoate ester analogs. This transformation requires a strong single electron transfer (SET) reductant and a means to accelerate slow fragmentation following substrate reduction. To accomplish this, we developed a photocatalytic system that generates a potent reductant from formate salts alongside Brønsted or Lewis acids that promote fragmentation of the reduced intermediate. This deoxygenation procedure is effective across structurally and electronically diverse alcohols and enables a variety of difficult net transformations. This protocol requires no precautions to exclude air or moisture and remains efficient on multigram scale. Finally, the system can be adapted to a one-pot benzoylation-deoxygenation sequence to enable direct alcohol deletion. Mechanistic studies validate that the role of acidic additives is to promote the key C(sp3 )-O bond fragmentation step.
Collapse
Affiliation(s)
- Oliver P. Williams
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Myriam Mikhael
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Desiree M. Bates
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Charles S. Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| |
Collapse
|
5
|
Sanaullah AFM, Devi P, Hossain T, Sultan SB, Badhon MMU, Hossain ME, Uddin J, Patwary MAM, Kazi M, Matin MM. Rhamnopyranoside-Based Fatty Acid Esters as Antimicrobials: Synthesis, Spectral Characterization, PASS, Antimicrobial, and Molecular Docking Studies. Molecules 2023; 28:molecules28030986. [PMID: 36770652 PMCID: PMC9919056 DOI: 10.3390/molecules28030986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
The most widely used and accessible monosaccharides have a number of stereogenic centers that have been hydroxylated and are challenging to chemically separate. As a result, the task of regioselective derivatization of such structures is particularly difficult. Considering this fact and to get novel rhamnopyranoside-based esters, DMAP-catalyzed di-O-stearoylation of methyl α-l-rhamnopyranoside (3) produced a mixture of 2,3-di-O- (4) and 3,4-di-O-stearates (5) (ratio 2:3) indicating the reactivity of the hydroxylated stereogenic centers of rhamnopyranoside as 3-OH > 4-OH > 2-OH. To get novel biologically active rhamnose esters, di-O-stearates 4 and 5 were converted into six 4-O- and 2-O-esters 6-11, which were fully characterized by FT-IR, 1H, and 13C NMR spectral techniques. In vitro antimicrobial assays revealed that fully esterified rhamnopyranosides 6-11 with maximum lipophilic character showed better antifungal susceptibility than antibacterial activity. These experimental findings are similar to the results found from PASS analysis data. Furthermore, the pentanoyl derivative of 2,3-di-O-stearate (compound 6) showed better antifungal functionality against F. equiseti and A. flavus, which were found to be better than standard antibiotics. To validate the better antifungal results, molecular docking of the rhamnose esters 4-11 was performed with lanosterol 14α-demethylase (PDB ID: 3LD6), including the standard antifungal antibiotics ketoconazole and fluconazole. In this instance, the binding affinities of 10 (-7.6 kcal/mol), 9 (-7.5 kcal/mol), and 7 (-6.9 kcal/mol) were better and comparable to fluconazole (-7.3 kcal/mol), indicating the likelihood of their use as non-azole type antifungal drugs in the future.
Collapse
Affiliation(s)
- Abul Fazal Muhammad Sanaullah
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Puja Devi
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Takbir Hossain
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sulaiman Bin Sultan
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammad Mohib Ullah Badhon
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md. Emdad Hossain
- Wazed Miah Science Research Centre (WMSRC), Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, MD 21216, USA
| | | | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (M.K.); (M.M.M.); Tel.: +880-1716-839689 (M.M.M.)
| | - Mohammed Mahbubul Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
- Correspondence: (M.K.); (M.M.M.); Tel.: +880-1716-839689 (M.M.M.)
| |
Collapse
|
6
|
Ren B, Wang J, Zhang M, Chen Y, Zhao W. A Chiral Copper Catalyzed Site‐Selective O‐Alkylation of Carbohydrates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bo Ren
- College of Pharmacy Xinxiang University Jinsui Avenue 191 Xinxiang Henan 453003 People's Republic of China
| | - Jiaxi Wang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering Sichuan University Chengdu 610041 People's Republic of China
| | - Mengyao Zhang
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Yue Chen
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Wei Zhao
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| |
Collapse
|
7
|
Abstract
Carbohydrates are a large class of natural products that play key roles in a number of biological processes such as in cellular communication or disease progression. Carbohydrates are also used as vaccines and pharmaceuticals. Their synthesis through glycosylation reactions is challenging, and often stoichiometric amounts of promoters are required. Transition metal catalyzed glycosylation reactions are far less common, but can have advantages with respect to reaction conditions and selectivity. The review intends to approach the topic from the catalysis and carbohydrate perspective to encourage researchers from both the fields to perform research in the area. The article covers the basics in glycosylation and catalysis chemistry. The catalysts for the reaction can be roughly divided into two groups. In one group, the catalysts serve as Lewis acids. In the other group, the catalysts play a higher sophisticated role, are involved in all elementary steps of the mechanism and remain coordinated to the substrate throughout the whole catalytic cycle. Based on selected examples, the main trends in transition metal catalyzed glycosylation reactions are explained. Lewis acid catalysts tend to require a somewhat higher catalyst load compared to other organometallic catalysts. The reaction conditions such as the temperature and time depend in many cases on the leaving group employed. An outlook is also presented. The article is not meant to be comprehensive; it outlines the most common transition metal catalyzed processes with the intention to bring the catalysis and carbohydrate communities together and to inspire research activities in both areas.
Collapse
Affiliation(s)
- Eike B Bauer
- University of Missouri - St Louis, Department of Chemistry and Biochemistry, One University Boulevard, St Louis, MO 63121, USA.
| |
Collapse
|
8
|
Luo T, Zhang Y, Xi J, Lu Y, Dong H. Improved Synthesis of Sulfur-Containing Glycosides by Suppressing Thioacetyl Migration. Front Chem 2020; 8:319. [PMID: 32391332 PMCID: PMC7191076 DOI: 10.3389/fchem.2020.00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Complex mixtures were often observed when we attempted to synthesize 4-thio- and 2,4-dithio-glycoside derivatives by double parallel and double serial inversion, thus leading to no or low yields of target products. The reason was later found to be that many unexpected side products were produced when a nucleophile substituted the leaving group on the substrate containing the thioacetate group. We hypothesized that thioacetyl migration is prone to occur due to the labile thioacetate group even under weak basic conditions caused by the nucleophile, leading to this result. Therefore, we managed to inhibit the generation of thiol groups from thioacetate groups by the addition of an appropriate amount of conjugate acid/anhydride, successfully improving the synthesis of 4-thio- and 2,4-dithio-glycoside derivatives. The target products which were previously difficult to synthesize, were herein obtained in relatively high yields. Finally, 4-deoxy- and 2,4-dideoxy-glycoside derivatives were efficiently synthesized through the removal of thioacetate groups under UV light, starting from 4-thio- and 2,4-dithio-glycoside derivatives.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jiafeng Xi
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Lv J, Zhu JJ, Liu Y, Dong H. Regioselective Sulfonylation/Acylation of Carbohydrates Catalyzed by FeCl 3 Combined with Benzoyltrifluoroacetone and Its Mechanism Study. J Org Chem 2020; 85:3307-3319. [PMID: 31984732 DOI: 10.1021/acs.joc.9b03128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A catalytic amount of FeCl3 combined with benzoyl trifluoroacetone (Hbtfa) (FeCl3/Hbtfa = 1/2) was used to catalyze sulfonylation/acylation of diols and polyols using diisopropylethylamine (DIPEA) or potassium carbonate (K2CO3) as a base. The catalytic system exhibited high catalytic activity, leading to excellent isolated yields of sulfonylation/acylation products with high regioselectivities. Mechanism studies indicated that FeCl3 initially formed [Fe(btfa)3] (btfa = benzoyl trifluoroacetonate) with twice the amount of Hbtfa under basic conditions in the solvent acetonitrile at room temperature. Then, Fe(btfa)3 and two hydroxyl groups of the substrates formed a five- or six-membered ring intermediate in the presence of the base. The subsequent reaction between the cyclic intermediate and a sulfonylation reagent led to the selective sulfonylation of the substrate. All key intermediates were captured in the high-resolution mass spectrometry assay, therefore demonstrating this mechanism for the first time.
Collapse
Affiliation(s)
- Jian Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Jia-Jia Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Yu Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| |
Collapse
|
10
|
Lv J, Luo T, Zou D, Dong H. Using DMF as Both a Catalyst and Cosolvent for the Regioselective Silylation of Polyols and Diols. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian Lv
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Tao Luo
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering; Zhengzhou University; 450052 Zhengzhou P. R. China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| |
Collapse
|
11
|
Ren B, Zhang M, Xu S, Gan L, Zhang L, Tang L. DBN-Catalyzed Regioselective Acylation of Carbohydrates and Diols in Ethyl Acetate. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Ren
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Mengyao Zhang
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Shijie Xu
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Lu Gan
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Li Zhang
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Lin Tang
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| |
Collapse
|
12
|
Shimada N, Nakamura Y, Ochiai T, Makino K. Catalytic Activation of Cis-Vicinal Diols by Boronic Acids: Site-Selective Acylation of Carbohydrates. Org Lett 2019; 21:3789-3794. [DOI: 10.1021/acs.orglett.9b01231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Takayuki Ochiai
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|