1
|
Kasai S, Karmacharya A, Mukai Y, Sato S. Bangle (Zingiber purpureum Rosc.) Extract Ameliorates Colonic Inflammation and Upregulates Autophagy via the Modulation of the AMPK/mTOR/NFκB Pathway in a Mouse Colitis Model. Mol Nutr Food Res 2025; 69:e70034. [PMID: 40177841 DOI: 10.1002/mnfr.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Bangle, a perennial herb belonging to the ginger family with antiinflammatory properties, has been under-researched in ulcerative colitis. This study aimed to investigate the effects of Bangle extract (BaE) on inflammation and autophagy in the colons of mice with dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6J mice were assigned to four groups: control, DSS + 0% BaE, DSS + 1% BaE, and DSS + 3% BaE. The BaE groups were fed BaE diets for 3 weeks, followed by an additional week of BaE diets and 3% DSS in the water. The control group received a standard chow diet and water for 4 weeks. Plasma leucine-rich α2-glycoprotein (LRG) levels, macrophage count, and the levels of nuclear factor kappa B (NFκB) p65, tumor necrosis factor-α (TNF-α), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), mechanistic target of rapamycin (mTOR), and autophagy markers were analyzed. In the DSS + 0% BaE group, LRG levels, macrophage count, NFκB p65 protein, and TNF-α mRNA levels were significantly higher compared to the control group. However, in the DSS + 3% BaE group, these levels were significantly reduced. Additionally, PGC-1α and phosphorylated AMPK levels were increased, while phosphorylated mTOR levels decreased, and autophagy marker microtubule-associated protein 1 light chain 3B (LC3B)-II levels were increased in the DSS + 3% BaE group. BaE may ameliorate colonic inflammation and upregulate autophagy via the modulation of the AMPK/mTOR/NFκB pathway in DSS-induced colitis.
Collapse
Affiliation(s)
- Shiho Kasai
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Anishma Karmacharya
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Yuuka Mukai
- School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa, Japan
| | - Shin Sato
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| |
Collapse
|
2
|
Sebe M, Senoura S, Miura K, Kobayashi W, Yano N, Yamauchi G, Harada K, Fukuyama Y, Kubo M, Murakami K. Antibacterial Activity of Banglene Extracted from Indonesian Ginger "Bangle" Against Porphyromonas gingivalis. Int J Mol Sci 2025; 26:1787. [PMID: 40076415 PMCID: PMC11898951 DOI: 10.3390/ijms26051787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Periodontitis is one of the most common diseases associated with the lifestyle habits of adults and is caused by the formation of biofilms, called dental plaques, in periodontal pockets by oral bacteria, such as Porphyromonas gingivalis. Bangle, Zingiber purpureum Rosc. (Indonesian ginger), a native Indonesian plant, has been traditionally consumed as food and medicine across Southeast Asia. The cis- and trans-banglenes, components of the rhizomes of Z. purpureum, have been reported to possess neurotrophic activity. Hexane extract of bangle exhibited antibacterial activity against P. gingivalis, with a minimum inhibitory concentration of 8 μg/mL. We isolated several compounds from the active fractions through the bioassay-guided isolation of hexane extract. Further, we found that c- and t-banglene inhibited the growth of P. gingivalis at 4 µg/mL; however, these compounds showed no antibacterial effects against oral microorganisms. We also observed that c- and t-banglenes resulted in 47% and 40% reductions in biofilm formation. In conclusion, our results suggest that banglene has specific antibacterial effects against the periodontopathogen P. gingivalis, with minimal impact on oral microorganisms. Thus, banglene has potential applications in the prevention of periodontitis without the risk of substituted microbisms.
Collapse
Affiliation(s)
- Mayu Sebe
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki 701-0193, Japan; (M.S.)
| | - Satoka Senoura
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki 701-0193, Japan; (M.S.)
| | - Kiyoshi Miura
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki 701-0193, Japan; (M.S.)
| | - Wako Kobayashi
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki 701-0193, Japan; (M.S.)
| | - Nagisa Yano
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Gaku Yamauchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Keiji Murakami
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki 701-0193, Japan; (M.S.)
| |
Collapse
|
3
|
Shoji M, Okamoto R, Unno T, Harada K, Kubo M, Fukuyama Y, Kuzuhara T. Transcriptome analysis of PC12 cells reveals that trans-banglene upregulates RT1-CE1 and downregulates abca1 in the neurotrophic pathway. Biol Pharm Bull 2022; 45:1784-1790. [PMID: 36155550 DOI: 10.1248/bpb.b22-00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trans(t)-banglene and cis(c)-banglene possess neurotrophin-like activity in rat neurons. However, the molecular mechanisms underlying t-banglene-induced neurotrophic activity in rat and human neurons remain unclear. Here, we performed transcriptome analysis in PC12 cells, a rat adrenal gland pheochromocytoma cell line treated with t-banglene, using comprehensive RNA sequencing. The differentially expressed gene analysis of the sequencing data revealed that the expression of RT1 class I, locus CE1 (RT1-CE1) was upregulated, and that of ATP binding cassette subfamily A member 1 (abca1), myosin light chain 6, and hippocampus abundant transcript 1 was downregulated in t-banglene-treated PC12 cells, with statistically significant differences. We also confirmed the RT1-CE1 upregulation and abca1 downregulation in t-banglene-treated PC12 cells by reverse transcription quantitative real-time polymerase chain reaction. RT1-CEl is a major histocompatibility complex class I (MHCI) protein. ABCAl is a major cholesterol transporter that regulates efflux of intracellular cholesterol and phospholipids. Thus, our results suggest an exciting link between MHCI, cholesterol regulation, and neural development.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Risa Okamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Taishi Unno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Kenichi Harada
- Laboratory of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Miwa Kubo
- Laboratory of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Yoshiyasu Fukuyama
- Laboratory of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
4
|
Gohil K, Kazmi MZH, Williams FJ. Structure-activity relationship and bioactivity studies of neurotrophic trans-banglene. Org Biomol Chem 2022; 20:2187-2193. [PMID: 35229853 DOI: 10.1039/d2ob00016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The synthesis and bioactivity of neurotrophic banglenes and derivatives is described, establishing a structure-activity relationship which enables future mechanistic studies. Neuritogenesis assays indicate that (-) trans-banglene is the active enantiomer. Assays performed with and without NGF protein suggest that neurotrophic activity and potentiation of NGF activity by (-) trans-banglene might be distinct unassociated processes. Interestingly, (-) trans-banglene potentiation of NGF-induced neuritogenesis is unaffected by the presence of Erk1/2, Akt and Pkc inhibitors.
Collapse
Affiliation(s)
- Khyati Gohil
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - M Zain H Kazmi
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | |
Collapse
|
5
|
Bioactive Compounds from Zingiber montanum and Their Pharmacological Activities with Focus on Zerumbone. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The genus Zingiber consists of about 85 species and many of these species are used as food, spices, and medicines. One of the species, Zingiber montanum (J. Koenig) Link ex A. Dietr. is native to Southeast Asia and has been extensively used as traditional medicines and food. The aim of this review was to collect and critically analyze the scientific information about the bioactive compounds and pharmacological activities of Z. montanum with focus on one of the main components, zerumbone (ZER). Various studies have reported the analysis of volatile constituents of the essential oils from Z. montanum. Similarly, many phenylbutanoids, flavonoids and terpenes were also isolated from rhizomes. These essential oils, extracts and compounds showed potent antimicrobial, anti-inflammatory and antioxidant activities among others. Zerumbone has been studied widely for its anticancer, anti-inflammatory, and other pharmacological activities. Future studies should focus on the exploration of various pharmacological activities of other compounds including phenylbutanoids and flavonoids. Bioassay guided isolation may result in the separation of other active components from the extracts. Z. montanum could be a promising source for the development of pharmaceutical products and functional foods.
Collapse
|
6
|
Musdja MY. Potential bangle ( Zingiber montanum J.König) rhizome extract as a supplement to prevent and reduce symptoms of Covid-19. Saudi J Biol Sci 2021; 28:2245-2253. [PMID: 33519275 PMCID: PMC7832787 DOI: 10.1016/j.sjbs.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022] Open
Abstract
The morbidity and mortality rates due to Covid-19 are increasing day by day, to overcome this, we urgently need a better treatment strategy, therefore various ways and strategies for this must be pursued. The purpose of the present review is to explain that the rhizome of bangle (Zingiber montanum) has great potential to increase antibodies and reduce symptoms of acute respiratory distress syndrome (ARDS), which also seems suitable for treating Covid-19. Method: This review is looking for the results of scientific research from various sources, regarding the efficacy of bangle (Zingiber montanum) rhizome which is strongly suspected to be able to prevent, and reduce the symptoms that occur in COVID-19. The results showed that the bangle rhizome extract had activity as immunomodulatory, antiviral and reduced symptoms such as what happened in COVID-19. Conclusion: Bangle rhizome extract has dozens of nutritious substances and has multifunctional activities, and it can be postulated that among the benefits of bangle rhizome extract it is able to prevent and reduce symptoms that occur in Covid-19, and preclinical studies and clinical studies are needed to prove this postulate.
Collapse
Affiliation(s)
- Muhammad Yanis Musdja
- Department of Pharmacology, Faculty of Health Sciences, State Islamic University, Syarif Hidayatullah, Jakarta, Indonesia
| |
Collapse
|
7
|
Brillatz T, Kubo M, Takahashi S, Jozukuri N, Takechi K, Queiroz EF, Marcourt L, Allard PM, Fish R, Harada K, Ishizawa K, Crawford AD, Fukuyama Y, Wolfender JL. Metabolite Profiling of Javanese Ginger Zingiber purpureum and Identification of Antiseizure Metabolites via a Low-Cost Open-Source Zebrafish Bioassay-Guided Isolation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7904-7915. [PMID: 32628839 DOI: 10.1021/acs.jafc.0c02641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The rhizomes of Zingiber purpureum, "Bangle", were investigated for its antiseizure properties using a streamlined and cost-effective zebrafish screening strategy and a mouse epilepsy assay. Its hexane extract demonstrated strong antiseizure activity in zebrafish epilepsy assay and was, therefore, selected for bioactivity-guided fractionation. Twelve compounds (1-12) were isolated, and two bioactive phenylbutenoids, trans- (11) and cis-banglene (12), reduced up to 70% of pentylenetetrazole (PTZ)-induced seizures. These compounds showed moderate activity against PTZ-induced seizures in a mouse epilepsy assay. To understand the specificity of Z. purpureum active compounds, its chemical profile was compared to that of Z. officinale. Their composition was assessed by differential metabolite profiling visualized by a molecular network, which revealed only vanillin derivatives and terpenoids as common metabolites and gave a comprehensive view of Z. purpureum composition. This study demonstrates the efficacy of a streamlined zebrafish epilepsy assay, which is therefore suitable for routine screening in phytochemistry laboratories.
Collapse
Affiliation(s)
- Théo Brillatz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Shimon Takahashi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Natsumi Jozukuri
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | | | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Richard Fish
- Department of Genetic Medicine and Development, University of Geneva, Faculty of Medicine, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Alexander D Crawford
- Department of Preclinical Sciences & Pathology, Norwegian University of Life Sciences, Ulleva°lsveien 72, 0454 Oslo, Norway
| | - Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
8
|
Hirano K, Kubo M, Fukuyama Y, Namihira M. Indonesian Ginger (Bangle) Extract Promotes Neurogenesis of Human Neural Stem Cells through WNT Pathway Activation. Int J Mol Sci 2020; 21:E4772. [PMID: 32635647 PMCID: PMC7369972 DOI: 10.3390/ijms21134772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022] Open
Abstract
Indonesian ginger (Zingiber purpureum Rosc.), also known as Bangle, exhibits neurotrophic effects on cultured murine cortical neurons and in the adult mouse brain, but the underlying mechanisms remain unknown. Here, using human fetal neural stem cells (hfNSCs) as a model system for in vitro human neurogenesis, we show that Bangle extracts activate canonical WNT/β-catenin signaling. Bangle extract-treatment of hfNSCs not only promoted neuronal differentiation, but also accelerated neurite outgrowth from immature neurons. Furthermore, Bangle extracts induced expression of neurogenic genes and WNT signaling-target genes, and facilitated the accumulation of β-catenin in nuclei of hfNSC. Interestingly, altered histone modifications were also observed in Bangle-treated hfNSCs. Together, these findings demonstrate that Bangle contributes to hfNSC neurogenesis by WNT pathway and epigenetic regulation.
Collapse
Affiliation(s)
- Kazumi Hirano
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Miwa Kubo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (M.K.); (Y.F.)
| | - Yoshiyasu Fukuyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (M.K.); (Y.F.)
| | - Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| |
Collapse
|
9
|
cis-Banglene, a bangle (Zingiber purpureum)-derived bioactive compound, promotes mitochondrial biogenesis and glucose uptake by activating the IL-6/AMPK signaling pathway in C2C12 skeletal muscle cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|