1
|
Maurya MR, Nandi M, Kumar S, Gupta P, Avecilla F. Symmetrical Bis-Hydrazone Ligand-Based Binuclear Oxido/Dioxido-Vanadium(IV/V) Complexes: Synthesis, Reactivity, and Catalytic Applications for the Synthesis of Biologically Potent 2-Phenylquinazolin-4-(3 H)-ones. Inorg Chem 2025; 64:1734-1751. [PMID: 39838882 DOI: 10.1021/acs.inorgchem.4c04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Symmetrical bis(hydrazone)-based ligands, H4dar(bhz)2 (I), H4dar(fah)2 (II), H4dar(nah)2 (III), and H4dar(inh)2 (IV) obtained from 4,6-diacetylresorcinol (H2dar) and different hydrazides [benzoylhydrazide (Hbhz), isonicotinoylhydrazide (Hinh), nicotinoylhydrazide (Hnah), and 2-furoylhydrazide (Hfah)], were used to prepare potassium salts of binuclear cis-[VVO2]+ complexes, {K(H2O)2}2[(VVO2)2dar(bhz)2] (1), {K(H2O)2}2[(VVO2)2dar(fah)2] (2), {K(H2O)2}2[(VVO2)2dar(nah)2] (3), and {K(H2O)2}2[(VVO2)2dar(inh)2] (4), and binuclear [VIVO]2+ complexes, [{VIVO(MeOH)}2dar(bhz)2] (5), [{VIVO(MeOH)}2dar(fah)2] (6), [{VIVO(MeOH)}2dar(nah)2] (7), and [{VIVO(MeOH)}2dar(inh)2] (8). In the presence of warm MeOH/DMSO (4:1), 3 changed to {K(H2O)2}[(VVO2)2Hdar(nah)2]·DMSO (3a·DMSO). Single crystal XRD studies of 1 and 3a confirm a binuclear structure along with a distorted square pyramidal geometry of each vanadium center where bis{ONO(2-)} ligands coordinate through phenolate-O, azomethine-N, and enolate-O atoms of each unit. While growing crystals of 6 in EtOH, part of it oxidizes and gives [{VVO(OEt)}2dar(fah)2] (9) along with powdery 6. Complex 9 has a distorted octahedral structure. These complexes were used as catalysts for the synthesis of biologically important 2-phenylquinazolin-4-(3H)-ones having different aryl aldehydes, and they all show excellent catalytic performance (up to 97% yield) in less reaction time and low temperature, in the presence of 70% aqueous TBHP/30% aqueous H2O2 as a greener oxidant. Generally, these complexes perform better than their mononuclear analogues. Spectroscopy, DFT studies, and isolated intermediates have helped in proposing a suitable reaction mechanism for the catalytic reaction.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monojit Nandi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sonu Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Puneet Gupta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruna 15071, Spain
| |
Collapse
|
2
|
Wang X, Yin J, Mao W, Wang Z, Wu S, You Y. Cs 2CO 3 Promoted [4 + 2] Cycloaddition of 1,6-Enynes: An Approach to Tetrahydro-1 H-benzo- f-isoindole Isomers. Org Lett 2024; 26:7757-7762. [PMID: 39267494 DOI: 10.1021/acs.orglett.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
A Cs2CO3-promoted [4 + 2] cycloaddition of 1,6-enynes under mild reaction conditions has been developed. This protocol provides a facile approach to a series of tetrahydro-1H-benzo[f]isoindole isomerized products promoted by Cs2CO3 with moderate to high yields. By simply switching the reaction solvent and controlling the reaction time, two isomerization products could be obtained, both with good selectivity.
Collapse
Affiliation(s)
- Xu Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Junhao Yin
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Wangqin Mao
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Zhenyu Wang
- Anhui Province Key Lab of Green Manufacturing in Phosegene Industry, Caijiashan Fine Chem Pk, Xinhang 242235, Guangde, China
| | - Shuang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
- Anhui Province Key Lab of Green Manufacturing in Phosegene Industry, Caijiashan Fine Chem Pk, Xinhang 242235, Guangde, China
| |
Collapse
|
3
|
Zhang Y, Zhu L, Lu Y, Lei X, Li Y. "One pot" synthesis of quinazolinone-[2,3]-fused polycyclic scaffolds in a three-step reaction sequence. Org Biomol Chem 2024; 22:4720-4726. [PMID: 38775781 DOI: 10.1039/d4ob00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Diverse quinazolinone-[2,3]-fused polycyclic skeletons occupy a prominent position in drug discovery. Even with currently available methods there still remain unmet needs for flexible access to such structures. Herein, we have explored a mild "one pot" procedure for the construction of various quinazolinone-[2,3]-fused polycycles. The procedure involves Pd-catalyzed carbonylation of N-(2-iodophenyl)acetamides, release of the masked terminal amine, and two sequential and spontaneous cyclizations. This generally applicable approach features easy assembly of precursors from readily available starting materials, mild reaction conditions, non-cumbersome operation, and polycyclic diversity.
Collapse
Affiliation(s)
- Yuanmu Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Lingxuan Zhu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yi Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Xinsheng Lei
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yingxia Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| |
Collapse
|
4
|
Mohassel Yazdi N, Naimi-Jamal MR. One-pot synthesis of quinazolinone heterocyclic compounds using functionalized SBA-15 with natural material ellagic acid as a novel nanocatalyst. Sci Rep 2024; 14:11189. [PMID: 38755166 PMCID: PMC11099149 DOI: 10.1038/s41598-024-61803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
The nanoporous compound SBA-15 was functionalized using (3-aminopropyl)trimethoxysilane (APTES). Then the obtained product was modified with ellagic acid (ELA), a bioactive polyphenolic compound. The structure of the prepared nanoporous composition SBA-15@ELA was extensively characterized and confirmed by various techniques, such as Fourier-transform infrared (FT-IR) spectroscopy, Energy dispersive X-ray (EDX) elemental analysis, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption-desorption isotherms (BET). The novel, recoverable, heterogenous SBA-15@ELA nanoporous compound was used to investigate its catalytic effect in the synthesis of 4-oxo-quinazoline derivatives (19 examples) with high yields (78-96%), as an important class of nitrogen-containing heterocyclic compounds. The use of an inexpensive mesoporous catalyst with a high surface area, along with easy recovery by simple filtration are among the advantages of this catalysis research work. The catalyst has been used in at least 6 consecutive runs without a significant loss of its activity.
Collapse
Affiliation(s)
- Nazanin Mohassel Yazdi
- Research Laboratory of Green Organic Synthesis & Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis & Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
5
|
Jayaram A, Govindan K, Kannan VR, Thavasianandam Seenivasan V, Chen NQ, Lin WY. Iodine-Promoted Oxidative Cyclization of Acylated and Alkylated Derivatives from Epoxides toward the Synthesis of Aza Heterocycles. J Org Chem 2023; 88:1749-1761. [PMID: 36649653 DOI: 10.1021/acs.joc.2c02802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A new method for directly synthesizing acylated and alkylated quinazoline derivatives by the epoxide ring-opening reaction in the presence of I2/DMSO with 2-aminobenzamide is described herein. The developed mild protocol is efficient and displays a wide variety of functional group tolerance and substrate-controlled high selectivity, and the application of a continuous flow technique allows for faster reaction time and higher yields. Moreover, the robustness of the method is applicable in gram-scale synthesis.
Collapse
Affiliation(s)
- Alageswaran Jayaram
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Vijaya Raghavan Kannan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | | | - Nian-Qi Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, ROC.,Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| |
Collapse
|
6
|
Tang B, Hua R. Cu(I)/Pd(II)-Catalyzed Intramolecular Hydroamidation and C-H Dehydrogenative Coupling of ortho-Alkynyl- N-arylbenzamides for Access to Isoindolo[2,1- a]Indol-6-Ones. Molecules 2022; 27:molecules27113393. [PMID: 35684329 PMCID: PMC9181885 DOI: 10.3390/molecules27113393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
An efficient, atom-economic and one-pot synthesis of isoindolo[2,1-a]indol-6-ones via CuI/Pd(OAc)2-catalyzed intramolecular hydroamidation of alkynyl group, and C-H dehydrogenative coupling of ortho-alkynyl-N-arylbenzamides has been developed. This transformation occurs with the use of oxygen as the oxidant, and water is the only by-product. The reaction shows a high tolerance to a variety of functional groups, and affords isoindolo[2,1-a]indol-6-ones in good to high yields.
Collapse
Affiliation(s)
- Baoxin Tang
- Department of Chemistry, Tsinghua University, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Beijing 100084, China;
| | - Ruimao Hua
- Department of Chemistry, Tsinghua University, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Beijing 100084, China;
- College of Chemistry, Xinjiang University, Urumqi 830017, China
- Correspondence: ; Tel.: +86-10-6279-2596
| |
Collapse
|
7
|
Mehmood H, Iqbal MA, Hua R. A concise synthesis of indolo[2,1-a]isoquinoline via alkyne annulations promoted by base. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Huang J, Chen W, Liang J, Yang Q, Fan Y, Chen MW, Peng Y. α-Keto Acids as Triggers and Partners for the Synthesis of Quinazolinones, Quinoxalinones, Benzooxazinones, and Benzothiazoles in Water. J Org Chem 2021; 86:14866-14882. [PMID: 34624963 DOI: 10.1021/acs.joc.1c01497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general and efficient method for the synthesis of quinazolinones, quinoxalinones, benzooxazinones, and benzothiazoles from the reactions of α-keto acids with 2-aminobenzamides, benzene-1,2-diamines, 2-aminophenols, and 2-aminobenzenethiols, respectively, is described. The reactions were conducted under catalyst-free conditions, using water as the sole solvent with no additive required, and successfully applied to the synthesis of sildenafil. More importantly, these reactions can be conducted on a mass scale, and the products can be easily purified through filtration and washing with ethanol (or crystallized).
Collapse
Affiliation(s)
- Jian Huang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Wei Chen
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jiazhi Liang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yan Fan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Mu-Wang Chen
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
9
|
Base-Promoted One-Pot Synthesis of Pyridine Derivatives via Aromatic Alkyne Annulation Using Benzamides as Nitrogen Source. Molecules 2021; 26:molecules26216599. [PMID: 34771009 PMCID: PMC8587654 DOI: 10.3390/molecules26216599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
In the presence of Cs2CO3, the first simple, efficient, and one-pot procedure for the synthesis of 3,5-diaryl pyridines via a variety of aromatic terminal alkynes with benzamides as the nitrogen source in sulfolane is described. The formation of pyridine derivatives accompanies the outcome of 1,3-diaryl propenes, which are also useful intermediates in organic synthesis. Thus, pyridine ring results from a formal [2+2+1+1] cyclocondensation of three alkynes with benzamides, and one of the alkynes provides one carbon, whilst benzamides provide a nitrogen source only. A new transformation of alkynes as well as new utility of benzamide are found in this work.
Collapse
|
10
|
Nomula V, Rao SN. KO tBu-BF 3.OEt 2 mediated synthesis of quinazolin-4( 3H)-ones from 2-substituted amides with nitriles and aldehydes. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1928218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vishnuvardhan Nomula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of scientific and innovative research(AcSIR), Ghaziabad, India
| | - Sadu Nageswara Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
11
|
Iqbal M, Lu L, Mehmood H, Hua R. Biaryl Formation via Base-Promoted Direct Coupling Reactions of Arenes with Aryl Halides. ACS OMEGA 2021; 6:15981-15987. [PMID: 34179643 PMCID: PMC8223439 DOI: 10.1021/acsomega.1c01736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 05/08/2023]
Abstract
In the absence of ligand, Cs2CO3-promoted cross-coupling reaction of arenes with cyano-/nitro-substituted aryl halides in DMSO affording biaryls is reported. The cyano/nitro group in biaryls is useful and convenient for further transformation. The formation of dibenzofurans resulting from the reactions between arenes and 1-bromo-2-iodobenzene is also reported. On the basis of control experiments and theoretical studies, a radical mechanism is proposed for the formation of biaryls.
Collapse
Affiliation(s)
- Muhammad
Asif Iqbal
- Key Laboratory of Organic Optoelectronics
& Molecular Engineering of Ministry of Education, Department of
Chemistry, Tsinghua University, Beijing 100084, China
| | - Le Lu
- Key Laboratory of Organic Optoelectronics
& Molecular Engineering of Ministry of Education, Department of
Chemistry, Tsinghua University, Beijing 100084, China
| | - Hina Mehmood
- Key Laboratory of Organic Optoelectronics
& Molecular Engineering of Ministry of Education, Department of
Chemistry, Tsinghua University, Beijing 100084, China
| | - Ruimao Hua
- Key Laboratory of Organic Optoelectronics
& Molecular Engineering of Ministry of Education, Department of
Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Hou H, Ma X, Lin Y, Lin J, Sun W, Wang L, Xu X, Ke F. Electrochemical synthesis of quinazolinone via I 2-catalyzed tandem oxidation in aqueous solution. RSC Adv 2021; 11:17721-17726. [PMID: 35480173 PMCID: PMC9033184 DOI: 10.1039/d1ra02706a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
The development of protocols for synthesizing quinazolinones using biocompatible catalysts in aqueous medium will help to resolve the difficulties of using green and sustainable chemistry for their synthesis. Herein, using I2 in coordination with electrochemical synthesis induced a C-H oxidation reaction which is reported when using water as the environmentally friendly solvent to access a broad range of quinazolinones at room temperature. The reaction mechanism strongly showed that I2 cooperates electrochemically promoted the oxidation of alcohols, then effectively cyclizing amides to various quinazolinones.
Collapse
Affiliation(s)
- Huiqing Hou
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Xinhua Ma
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Yingying Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Jin Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Weiming Sun
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Lei Wang
- School of Science, Xuchang University Xuchang 461000 China
| | - Xiuzhi Xu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Fang Ke
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016.,Faculty of Material and Chemical Engineering, Yibin University Yibin 644000 China
| |
Collapse
|
13
|
Yang L, Hou H, Li L, Wang J, Zhou S, Wu M, Ke F. Electrochemically induced synthesis of quinazolinones via cathode hydration of o-aminobenzonitriles in aqueous solutions. Org Biomol Chem 2021; 19:998-1003. [PMID: 33448270 DOI: 10.1039/d0ob02286a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient and practical electrochemically catalyzed transition metal-free process for the synthesis of substituted quinazolinones from simple and readily available o-aminobenzonitriles and aldehydes in water has been accomplished. I2/base and water play an unprecedented and vital role in the reaction. By electrochemically catalysed hydrolysis of o-aminobenzonitriles, the synthesis of quinazolinones with benzaldehyde was first proposed. The synthetic utility of this method was demonstrated by gram-scale operation, as well as the preparation of bioactive N-(2,5-dichlorophenyl)-6-(2,2,2-trifluoroethoxy) pteridin-4-amine, which enables straightforward, practical and environmentally benign quinazolinone formation.
Collapse
Affiliation(s)
- Li Yang
- College of Chemistry & Chemical Engineering, Yibin University, Yibin, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Sun M, Yu YL, Zhao L, Ding MW. One-pot and divergent synthesis of furo[3,2-c]quinolines and quinazolin-4(3H)-ones via sequential isocyanide-based three-component/Staudinger/aza-Wittig reaction. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Yang K, Liu M, Zhang Y, Zhan J, Deng L, Zheng X, Zhou Y, Wang Z. Progress in the Synthesis of Benzoheterocycles from 2-Halobenzamides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Viji M, Vishwanath M, Sim J, Park Y, Jung C, Lee S, Lee H, Lee K, Jung JK. α-Hydroxy acid as an aldehyde surrogate: metal-free synthesis of pyrrolo[1,2- a]quinoxalines, quinazolinones, and other N-heterocycles via decarboxylative oxidative annulation reaction. RSC Adv 2020; 10:37202-37208. [PMID: 35521290 PMCID: PMC9057147 DOI: 10.1039/d0ra07093a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
A metal-free and efficient procedure for the synthesis of pyrrolo[1,2-a]quinoxalines, quinazolinones, and indolo[1,2-a]quinoxaline has been developed. The key features of our method include the in situ generation of aldehyde from α-hydroxy acid in the presence of TBHP (tert-butyl hydrogen peroxide), and further condensation with various amines, followed by intramolecular cyclization and subsequent oxidation to afford the corresponding quinoxalines, quinazolinones derivatives in moderate to high yields.
Collapse
Affiliation(s)
- Mayavan Viji
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Manjunatha Vishwanath
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Jaeuk Sim
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Yunjeong Park
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Chanhyun Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Seohu Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Heesoon Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Kiho Lee
- College of Pharmacy, Korea University Sejong 30019 Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| |
Collapse
|
17
|
Base-Promoted Annulation of Amidoximes with Alkynes: Simple Access to 2,4-Disubstituted Imidazoles. Molecules 2020; 25:molecules25163621. [PMID: 32784900 PMCID: PMC7463794 DOI: 10.3390/molecules25163621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 01/19/2023] Open
Abstract
An efficient construction of imidazole ring by a Cs2CO3-promoted annulation of amidoximes with terminal alkynes in DMSO has been developed. This protocol provides a simple synthetic route with high atom-utilization for the synthesis of 2,4-disubstituted imidazoles in good yields under transition-metal-free and ligand-free conditions. Internal alkynes can also undergo the annulation to give 2,4,5-trisubstituted imidazoles.
Collapse
|
18
|
Cao AZ, Xiao YT, Wu YC, Song RJ, Xie YX, Li JH. Copper-catalyzed C–H [3 + 2] annulation of N-substituted anilines with α-carbonyl alkyl bromides via C(sp3)–Br/C(sp2)–H functionalization. Org Biomol Chem 2020; 18:2170-2174. [DOI: 10.1039/d0ob00399a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A copper-catalyzed C–H [3 + 2] annulation of N-substituted anilines with α-carbonyl alkyl bromides for the synthesis of 3,3′-disubstituted oxindoles is developed.
Collapse
Affiliation(s)
- An-Zhu Cao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Yu-Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Yan-Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ye-Xiang Xie
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
19
|
Chen Q, Wang Y, Hua R. Base-Promoted Chemodivergent Formation of 1,4-Benzoxazepin-5(4 H)-ones and 1,3-Benzoxazin-4(4 H)-ones Switched by Solvents. Molecules 2019; 24:molecules24203773. [PMID: 31635103 PMCID: PMC6832296 DOI: 10.3390/molecules24203773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
The KOH-promoted chemodivergent benzannulation of ortho-fluorobenzamides with 2-propyn-1-ol can afford either 1,4-benzoxazepin-5(4H)-ones or 1,3-benzoxazin-4(4H)-ones in good yields with high selectivity, depending greatly upon the use of solvents. In the case of using DMSO, the intermolecular benzannulation produced seven-membered benzo-fused heterocycles of 1,4-benzoxazepin-5(4H)-ones, whereas in MeCN, the six-membered benzo-fused heterocycles of 1,3-benzoxazin-4(4H)-ones were formed. The KOH-promoted benzannulation proceeded most probably through the C–F nucleophilic substitution of ortho-fluorobenzamides with 2-propyn-1-ol to give the intermediate of ortho-[(2-propynyl)oxy]benzamide, which underwent the intramolecular hydroamidation in a different manner to afford either seven- or six-membered benzo-fused heterocycles.
Collapse
Affiliation(s)
- Qian Chen
- Department of Chemistry, Tsinghua University, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Beijing 100084, China.
| | - Yunpeng Wang
- Department of Chemistry, Tsinghua University, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Beijing 100084, China.
| | - Ruimao Hua
- Department of Chemistry, Tsinghua University, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Beijing 100084, China.
| |
Collapse
|