1
|
Ahmadpoor X, Sun J, Douglas N, Zhu W, Lin H. Hydrogel-Enhanced Autologous Chondrocyte Implantation for Cartilage Regeneration-An Update on Preclinical Studies. Bioengineering (Basel) 2024; 11:1164. [PMID: 39593824 PMCID: PMC11591888 DOI: 10.3390/bioengineering11111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Autologous chondrocyte implantation (ACI) and matrix-induced ACI (MACI) have demonstrated improved clinical outcomes and reduced revision rates for treating osteochondral and chondral defects. However, their ability to achieve lasting, fully functional repair remains limited. To overcome these challenges, scaffold-enhanced ACI, particularly utilizing hydrogel-based biomaterials, has emerged as an innovative strategy. These biomaterials are intended to mimic the biological composition, structural organization, and biomechanical properties of native articular cartilage. This review aims to provide comprehensive and up-to-date information on advancements in hydrogel-enhanced ACI from the past decade. We begin with a brief introduction to cartilage biology, mechanisms of cartilage injury, and the evolution of surgical techniques, particularly looking at ACI. Subsequently, we review the diversity of hydrogel scaffolds currently undergoing development and evaluation in preclinical studies for articular cartilage regeneration, emphasizing chondrocyte-laden hydrogels applicable to ACI. Finally, we address the key challenges impeding effective clinical translation, with particular attention to issues surrounding fixation and integration, aiming to inform and guide the future progression of tissue engineering strategies.
Collapse
Affiliation(s)
- Xenab Ahmadpoor
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA; (X.A.); (J.S.)
| | - Jessie Sun
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA; (X.A.); (J.S.)
| | - Nerone Douglas
- Department of Molecular Oncology, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA;
| | - Weimin Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518025, China
- Clinical College of the Second Shenzhen Hospital, Anhui Medical University, Shenzhen 518025, China
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA; (X.A.); (J.S.)
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
- Orland Bethel Family Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
van der Weiden G, Mastbergen S, Both S, Karperien M, Lafeber F, van Egmond N, Custers R. Dextran-tryamine hydrogel maintains position and integrity under simulated loading in a human cadaver knee model. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100492. [PMID: 38946794 PMCID: PMC11211881 DOI: 10.1016/j.ocarto.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Objective This dextran-tyramine hydrogel is a novel cartilage repair technique, filling focal cartilage defects to provide a cell-free scaffold for subsequent cartilage repair. We aim to asses this techniques' operative feasibility in the knee joint and its ability to maintain position and integrity under expected loading conditions. Method Seven fresh-frozen human cadaver legs (age range 55-88) were used to create 30 cartilage defects on the medial and lateral femoral condyles dependent of cartilage quality, starting with 1.0 cm2; augmenting to 1.5 cm2 and eventually 2.0 cm2. The defects were operatively filled with the injectable hydrogel scaffold. The knees were subsequently placed on a continues passive motion machine for 30 min of non-load bearing movement, mimicking post-operative rehabilitation. High resolution digital photographs documented the hydrogel scaffold after placement and directly after movement. Three independent observers blinded for the moment compared the photographs on outline attachment, area coverage and hydrogel integrity. Results The operative procedure was uncomplicated in all defects, application of the hydrogel was straightforward and comparable to common cartilage repair techniques. No macroscopic iatrogenic damage was observed. The hydrogel scaffold remained predominately unchanged after non-load bearing movement. Outline attachment, area coverage and hydrogel integrity were unaffected in 87%, 93% and 83% of defects respectively. Larger defects appear to be more affected than smaller defects, although not statistically significant (p > 0.05). Conclusion The results of this study show operative feasibility of this cell-free hydrogel scaffold for chondral defects of the knee joint. Sustained outline attachment, area coverage and hydrogel integrity were observed after non-load bearing knee movement.
Collapse
Affiliation(s)
- G.S. van der Weiden
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Developmental BioEngineering, University of Twente, Enschede, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - S.C. Mastbergen
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - S.K. Both
- Developmental BioEngineering, University of Twente, Enschede, the Netherlands
| | - M. Karperien
- Developmental BioEngineering, University of Twente, Enschede, the Netherlands
| | - F.P. Lafeber
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - N. van Egmond
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - R.J.H. Custers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Han Q, He J, Bai L, Huang Y, Chen B, Li Z, Xu M, Liu Q, Wang S, Wen N, Zhang J, Guo B, Yin Z. Injectable Bioadhesive Photocrosslinkable Hydrogels with Sustained Release of Kartogenin to Promote Chondrogenic Differentiation and Partial-Thickness Cartilage Defects Repair. Adv Healthc Mater 2024; 13:e2303255. [PMID: 38253413 DOI: 10.1002/adhm.202303255] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Partial-thickness cartilage defect (PTCD) is a common and formidable clinical challenge without effective therapeutic approaches. The inherent anti-adhesive characteristics of the extracellular matrix within cartilage pose a significant impediment to the integration of cells or biomaterials with the native cartilage during cartilage repair. Here, an injectable photocrosslinked bioadhesive hydrogel, consisting of gelatin methacryloyl (GM), acryloyl-6-aminocaproic acid-g-N-hydroxysuccinimide (AN), and poly(lactic-co-glycolic acid) microspheres loaded with kartogenin (KGN) (abbreviated as GM/AN/KGN hydrogel), is designed to enhance interfacial integration and repair of PTCD. After injected in situ at the irregular defect, a stable and robust hydrogel network is rapidly formed by ultraviolet irradiation, and it can be quickly and tightly adhered to native cartilage through amide bonds. The hydrogel exhibits good adhesion strength up to 27.25 ± 1.22 kPa by lap shear strength experiments. The GM/AN/KGN hydrogel demonstrates good adhesion, low swelling, resistance to fatigue, biocompatibility, and chondrogenesis properties in vitro. A rat model with PTCD exhibits restoration of a smoother surface, stable seamless integration, and abundant aggrecan and type II collagen production. The injectable stable adhesive hydrogel with long-term chondrogenic differentiation capacity shows great potential to facilitate repair of PTCD.
Collapse
Affiliation(s)
- Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahui He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ying Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Zhenlong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qiaonan Liu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shuai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nuanyang Wen
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, 710069, China
| | - Baolin Guo
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
4
|
Luo Y, Xiao M, Almaqrami BS, Kang H, Shao Z, Chen X, Zhang Y. Regenerated silk fibroin based on small aperture scaffolds and marginal sealing hydrogel for osteochondral defect repair. Biomater Res 2023; 27:50. [PMID: 37208690 DOI: 10.1186/s40824-023-00370-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Osteochondral defects pose an enormous challenge without satisfactory repair strategy to date. In particular, the lateral integration of neo-cartilage into the surrounding native cartilage is a difficult and inadequately addressed problem determining tissue repair's success. METHODS Regenerated silk fibroin (RSF) based on small aperture scaffolds was prepared with n-butanol innovatively. Then, the rabbit knee chondrocytes and bone mesenchymal stem cells (BMSCs) were cultured on RSF scaffolds, and after induction of chondrogenic differentiation, cell-scaffold complexes strengthened by a 14 wt% RSF solution were prepared for in vivo experiments. RESULTS A porous scaffold and an RSF sealant exhibiting biocompatibility and excellent adhesive properties are developed and confirmed to promote chondrocyte migration and differentiation. Thus, osteochondral repair and superior horizontal integration are achieved in vivo with this composite. CONCLUSIONS Overall, the new approach of marginal sealing around the RSF scaffolds exhibits preeminent repair results, confirming the ability of this novel graft to facilitate simultaneous regeneration of cartilage-subchondral bone.
Collapse
Affiliation(s)
- Yinyue Luo
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200002, China
| | - Menglin Xiao
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | | | - Hong Kang
- Department of Temporomandibular Joint and Occlusion, School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, 730013, China
| | - Zhengzhong Shao
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Xin Chen
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China.
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China.
| | - Ying Zhang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200002, China.
| |
Collapse
|
5
|
PEG Reinforced Scaffold Promotes Uniform Distribution of Human MSC-Created Cartilage Matrix. Gels 2022; 8:gels8120794. [PMID: 36547318 PMCID: PMC9778361 DOI: 10.3390/gels8120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Previously, we used a gelatin/hyaluronic acid (GH)-based scaffold to induce chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSC). The results showed that hBMSCs underwent robust chondrogenesis and facilitated in vivo cartilage regeneration. However, it was noticed that the GH scaffolds display a compressive modulus that is markedly lower than native cartilage. In this study, we aimed to enhance the mechanical strength of GH scaffolds without significantly impairing their chondrosupportive property. Specifically, polyethylene glycol diacrylate (PEGDA) and photoinitiators were infiltrated into pre-formed hBMSC-laden GH scaffolds and then photo-crosslinked. Results showed that infiltration of PEG at the beginning of chondrogenesis significantly increased the deposition of glycosaminoglycans (GAGs) in the central area of the scaffold. To explore the mechanism, we compared the cell migration and proliferation in the margin and central areas of GH and PEG-infiltrated GH scaffolds (GH+PEG). Limited cell migration was noticed in both groups, but more proliferating cells were observed in GH than in GH+PEG. Lastly, the in vitro repairing study with bovine cartilage explants showed that PEG- impregnated scaffolds integrated well with host tissues. These results indicate that PEG-GH hybrid scaffolds, created through infiltrating PEG into pre-formed GH scaffolds, display good integration capacity and represent a new tool for the repair of chondral injury.
Collapse
|
6
|
Bone fixation techniques for managing joint disorders and injuries: A review study. J Mech Behav Biomed Mater 2021; 126:104982. [PMID: 34852984 DOI: 10.1016/j.jmbbm.2021.104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 01/14/2023]
Abstract
The majority of surgical procedures treating joint disorders require a technique to realize a firm implant-to-tissue and/or a tissue-to-tissue fixation. Fixation methods have direct effects on survival, performance and integration of orthopedic implants This review paper gives an overview of novel fixation techniques that have been evaluated and optimized for orthopaedic joint implants and could be alternatives for traditional implant fixation techniques or inspirations for future design of joint implantation procedures. METHOD The articles were selected using the Scopus search engine. Key words referring to traditional fixation methods have been excluded to find potential innovative fixation techniques. In order to review the recent anchorage systems, only articles that been published during the period of 2010-2020 have been included. RESULTS A total of 57 studies were analyzed. The result revealed that three main fixation principles are being employed: using mechanical interlockings, employing adhesives, and performing tissue-bonding strategies. CONCLUSION The development of fixation techniques demonstrates a transformation from the general anchoring tools like K-wires toward application-specific designs. Several new methods have been designed and evaluated, which highlight encouraging results as described in this review. It seems that mechanical fixations provide the strongest anchorage. Employing (bio)-adhesives as fixation tool could revolutionize the field of orthopedic surgery. However, the adhesives must be improved and optimized to meet the requirements of an anchorage system. Long-term fixation might be formed by tissue ingrowth approaches which showed promising results. In most cases further clinical studies are required to explore their outputs in clinical applications.
Collapse
|
7
|
Marginal sealing around integral bilayer scaffolds for repairing osteochondral defects based on photocurable silk hydrogels. Bioact Mater 2021; 6:3976-3986. [PMID: 33997487 PMCID: PMC8081879 DOI: 10.1016/j.bioactmat.2021.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/21/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Osteochondral repair remains a major challenge in current clinical practice despite significant advances in tissue engineering. In particular, the lateral integration of neocartilage into surrounding native cartilage is a difficult and inadequately addressed problem that determines the success of tissue repair. Here, a novel design of an integral bilayer scaffold combined with a photocurable silk sealant for osteochondral repair is reported. First, we fabricated a bilayer silk scaffold with a cartilage layer resembling native cartilage in surface morphology and mechanical strength and a BMP-2-loaded porous subchondral bone layer that facilitated the osteogenic differentiation of BMSCs. Second, a TGF-β3-loaded methacrylated silk fibroin sealant (Sil-MA) exhibiting biocompatibility and good adhesive properties was developed and confirmed to promote chondrocyte migration and differentiation. Importantly, this TGF-β3-loaded Sil-MA hydrogel provided a bridge between the cartilage layer of the scaffold and the surrounding cartilage and then guided new cartilage to grow towards and replace the degraded cartilage layer from the surrounding native cartilage in the early stage of knee repair. Thus, osteochondral regeneration and superior lateral integration were achieved in vivo by using this composite. These results demonstrate that the new approach of marginal sealing around the cartilage layer of bilayer scaffolds with Sil-MA hydrogel has tremendous potential for clinical use in osteochondral regeneration.
Collapse
|