1
|
Xia B, Chen H, Wang J, Liu Y, Wu Q, Pan X. Enzymatic polymerization: Recent advances toward sustainable polymer synthesis. Biotechnol Adv 2025; 81:108566. [PMID: 40118227 DOI: 10.1016/j.biotechadv.2025.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/11/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Enzymatic polymerization has emerged as a sustainable strategy for synthesizing biodegradable, biocompatible polymers, addressing critical environmental challenges posed by conventional petroleum-based materials. This review comprehensively explores advancements from the past five years, spotlighting six pivotal enzymes lipase, horseradish peroxidase, laccase, glucose oxidase, glucosyltransferase, and phosphorylase-alongside synergistic multi-enzymatic systems that enable complex polymerization cascades. Diverging from prior reviews focused on individual enzymes or specific polymer classes (e.g., polyesters, polyamides), our work provides a systematic classification of enzymatic polymerization mechanisms, emphasizing substrate specificity, reaction efficiency, and product diversity. Integrating advances in enzyme engineering, cascade catalysis, and green chemistry, this analysis outlines strategies to customize polymer architectures, identifies challenges in scaling enzymatic processes, and underscores opportunities for industrial applications. It advocates interdisciplinary innovation to advance sustainable polymer synthesis aligned with circular economy principles, emphasizing enzymatic methods' transformative potential for eco-friendly manufacturing paradigms.
Collapse
Affiliation(s)
- Bo Xia
- Jiyang College of Zhejiang A&F University, Zhuji 311800, China.
| | - Honghao Chen
- Jiyang College of Zhejiang A&F University, Zhuji 311800, China
| | - Juntao Wang
- Jiyang College of Zhejiang A&F University, Zhuji 311800, China
| | - Yan Liu
- Jiyang College of Zhejiang A&F University, Zhuji 311800, China
| | - Qi Wu
- Zhejiang University, Hangzhou 310058, China.
| | - Xiaocheng Pan
- Jiyang College of Zhejiang A&F University, Zhuji 311800, China.
| |
Collapse
|
2
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Ni Y, Wang Y, Tabor AB, Ward JM, Hailes HC. The use of tyrosinases in a chemoenzymatic cascade as a peptide ligation strategy. RSC Chem Biol 2023; 4:132-137. [PMID: 36794017 PMCID: PMC9906322 DOI: 10.1039/d2cb00237j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Peptides play many key roles in biological systems and numerous methods have been developed to generate both natural and unnatural peptides. However, straightforward, reliable coupling methods that can be achieved under mild reactions conditions are still sought after. In this work, a new N-terminal tyrosine-containing peptide ligation method with aldehydes, utilising a Pictet-Spengler reaction is described. In a key step, tyrosinase enzymes have been used to convert l-tyrosine to l-3,4-dihydroxyphenyl alanine (l-DOPA) residues, generating suitable functionality for the Pictet-Spengler coupling. This new chemoenzymatic coupling strategy can be used for fluorescent-tagging and peptide ligation purposes.
Collapse
Affiliation(s)
- Yeke Ni
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Yu Wang
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Alethea B. Tabor
- Department of Chemistry, University College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical Engineering, University College LondonBernard Katz Building, Gower StreetLondon WC1E 6BTUK
| | - Helen C. Hailes
- Department of Chemistry, University College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
4
|
Permana D, Putra HE, Djaenudin D. Designed protein multimerization and polymerization for functionalization of proteins. Biotechnol Lett 2022; 44:341-365. [PMID: 35083582 PMCID: PMC8791688 DOI: 10.1007/s10529-021-03217-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022]
Abstract
Abstract Multimeric and polymeric proteins are large biomacromolecules consisting of multiple protein molecules as their monomeric units, connected through covalent or non-covalent bonds. Genetic modification and post-translational modifications (PTMs) of proteins offer alternative strategies for designing and creating multimeric and polymeric proteins. Multimeric proteins are commonly prepared by genetic modification, whereas polymeric proteins are usually created through PTMs. There are two methods that can be applied to create polymeric proteins: self-assembly and crosslinking. Self-assembly offers a spontaneous reaction without a catalyst, while the crosslinking reaction offers some catalyst options, such as chemicals and enzymes. In addition, enzymes are excellent catalysts because they provide site-specificity, rapid reaction, mild reaction conditions, and activity and functionality maintenance of protein polymers. However, only a few enzymes are applicable for the preparation of protein polymers. Most of the other enzymes are effective only for protein conjugation or labeling. Here, we review novel and applicable strategies for the preparation of multimeric proteins through genetic modification and self-assembly. We then describe the formation of protein polymers through site-selective crosslinking reactions catalyzed by enzymes, crosslinking reactions of non-natural amino acids, and protein-peptide (SpyCatcher/SpyTag) interactions. Finally, we discuss the potential applications of these protein polymers. Graphical abstract ![]()
Collapse
Affiliation(s)
- Dani Permana
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,Research Unit for Clean Technology, The National Research and Innovation Agency of Republic of Indonesia, Jl. Cisitu, Bandung, 40135, Indonesia.
| | - Herlian Eriska Putra
- Research Unit for Clean Technology, The National Research and Innovation Agency of Republic of Indonesia, Jl. Cisitu, Bandung, 40135, Indonesia
| | - Djaenudin Djaenudin
- Research Unit for Clean Technology, The National Research and Innovation Agency of Republic of Indonesia, Jl. Cisitu, Bandung, 40135, Indonesia
| |
Collapse
|
5
|
Tang S, Liao D, Li X, Lin Y, Han S, Zheng S. Cell-Free Biosynthesis System: Methodology and Perspective of in Vitro Efficient Platform for Pyruvate Biosynthesis and Transformation. ACS Synth Biol 2021; 10:2417-2433. [PMID: 34529398 DOI: 10.1021/acssynbio.1c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The modification of intracellular metabolic pathways by metabolic engineering has generated many engineered strains with relatively high yields of various target products in the past few decades. However, the unpredictable accumulation of toxic products, the cell membrane barrier, and competition between the carbon flux of cell growth and product synthesis have severely retarded progress toward the industrial-scale production of many essential chemicals. On the basis of an in-depth understanding of intracellular metabolic pathways, scientists intend to explore more sustainable methods and construct a cell-free biosynthesis system in vitro. In this review, the synthesis and application of pyruvate as a platform compound is used as an example to introduce cell-free biosynthesis systems. We systematically summarize a proposed methodology workflow of cell-free biosynthesis systems, including pathway design, enzyme mining, enzyme modification, multienzyme assembly, and pathway optimization. Some new methods, such as machine learning, are also mentioned in this review.
Collapse
Affiliation(s)
- Shiming Tang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Daocheng Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Xuewen Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
6
|
Ilesanmi OS, Adedugbe OF, Adewale IO. Potentials of purified tyrosinase from yam ( Dioscorea spp) as a biocatalyst in the synthesis of cross-linked protein networks. Heliyon 2021; 7:e07831. [PMID: 34485728 PMCID: PMC8405987 DOI: 10.1016/j.heliyon.2021.e07831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
We report the usefulness of yam tyrosinase as a catalyst in the synthesis of cross-linked protein networks for biopolymers. The enzyme was purified using aqueous two-phase partitioning (ATPs) and peptide mapping on SDS-PAGE was carried out to ascertain degree of similarities of tyrosinase from the yam species. The mapping revealed distinct peptide bands of 3, 4, 4 and 2 for tyrosinase from D. praehensilis, D. alata, D. rotundata and C. esculenta respectively purified using conventional method. In contrast, continuous broad band was noticed for the ATPS-purified enzymes due to bound polyethylene glycol (PEG). Tyrosinase from D. praehensilis with overall better properties was used in the synthesis of cross-linked protein networks. The enzyme catalyzed conversion of soluble proteins from whey, moringa leaves, pumpkin leaves and cow blood into fibrous (cross-linked) protein networks for improved properties and functionalities. The purified tyrosinase from D. praehensilis was also covalently bonded to bovine serum albumin (BSA) forming tyrosinase-BSA adduct with molecular weight of 118 ± 2.0 kDa, revealing its potential as a reporter enzyme by reporting BSA. The overall result further reinforces yam tyrosinase as an enzyme of interest in various biotechnological applications.
Collapse
Affiliation(s)
| | | | - Isaac Olusanjo Adewale
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
7
|
Li M, Karboune S, Liu L, Light K, L'Hocine L, Achouri A, Pitre M, Mateo C. Combining phenolic grafting and laccase-catalyzed cross-linking: Effects on structures, technofunctional properties and human immunoglobulin E binding capacity of egg white proteins. Food Chem 2021; 355:129587. [PMID: 33857721 DOI: 10.1016/j.foodchem.2021.129587] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/31/2021] [Accepted: 03/06/2021] [Indexed: 11/19/2022]
Abstract
The efficiency of laccase-catalyzed protein cross-linking can be impacted by substrate protein structure and competing reactions. In this study, chemical grafting of ferulic acid (FA) on protein surface was applied to modulate the cross-linking of two inflexible globular proteins, lysozyme (LZM) and ovalbumin (OVA). The extent of FA-grafting was positively correlated with protein cross-linking extent, and determined the molecular weight profile and structures of the cross-linked product. While laccase-catalyzed reactions (with or without free FA mediator) did not lead to evident cross-linking of the native proteins, oligomeric (up to 16.4%), polymeric (up to 30.6%) FA-LZMs and oligomeric FA-OVA (5.1-31.1%) were obtained upon the enzymatic treatments. The cross-linking on the grafted FA sites occurred mainly through the formation of 8-5'-noncyclic-dehydro-diferulic linkages. The effects of investigated cross-linking approach on the emulsifying, foaming properties and the immunoglobulin E (IgE) binding capacity of LZM and OVA were also evaluated in relation to the structural properties of cross-linked proteins.
Collapse
Affiliation(s)
- Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada.
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Kelly Light
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Lamia L'Hocine
- Agriculture and Agri-Food Canada, Casavant Blvd. West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Allaoua Achouri
- Agriculture and Agri-Food Canada, Casavant Blvd. West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Mélanie Pitre
- Agriculture and Agri-Food Canada, Casavant Blvd. West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Cesar Mateo
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry CSIC, Campus UAM, 28049 Madrid, Spain
| |
Collapse
|
8
|
Permana D, Minamihata K, Goto M, Kamiya N. Strategies for Making Multimeric and Polymeric Bifunctional Protein Conjugates and Their Applications as Bioanalytical Tools. ANAL SCI 2021; 37:425-437. [PMID: 33455962 DOI: 10.2116/analsci.20scr07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enzymes play a central role in the detection of target molecules in biotechnological fields. Most probes used in detection are bifunctional proteins comprising enzymes and binding proteins conjugated by chemical reactions. To create a highly sensitive detection probe, it is essential to increase the enzyme-to-binding protein ratio in the probe. However, if the chemical reactions required to prepare the probe are insufficiently site-specific, the detection probe may lose functionality. Genetic modifications and enzyme-mediated post-translational modifications (PTMs) can ensure the site-specific conjugation of proteins. They are therefore promising strategies for the production of detection probes with high enzyme contents, i.e., polymeric bifunctional proteins. Herein, we review recent advances in the preparation of bifunctional protein conjugates and polymeric bifunctional protein conjugates for detection. We have summarized research on genetically fused proteins and enzymatically prepared polymeric bifunctional proteins, and will discuss the potential use of protein polymers in various detection applications.
Collapse
Affiliation(s)
- Dani Permana
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI), Kampus LIPI Bandung
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| |
Collapse
|
9
|
Wu Y, Gao Y, Su J, Chen Z, Liu S. In situ detection of intracellular tissue transglutaminase based on aggregation-induced emission. Chem Commun (Camb) 2020; 56:9008-9011. [PMID: 32638755 DOI: 10.1039/d0cc03365k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel strategy for in situ imaging and real-time monitoring of intracellular tissue transglutaminase (TG2) is presented based on aggregation-induced emission (AIE). It has high sensitivity and specificity, minimal background signal and can also effectively distinguish different cell types (drug-resistant cancer cells, cancer cells and normal cells).
Collapse
Affiliation(s)
- Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | | | | | | | | |
Collapse
|