1
|
Wang H, Lu W, Bi H, Dai S. Dibenzosuberyl substituents suppressing chain transfer in Bis(imino)pyridyl Iron(II) catalyzed ethylene polymerization. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
2
|
Wang H, Lu W, Zou M, Dai S. Direct Synthesis of Polyethylene Thermoplastic Elastomers Using Hybrid Bulky Acenaphthene-Based α-Diimine Ni(II) Catalysts. Molecules 2023; 28:molecules28052266. [PMID: 36903510 PMCID: PMC10005668 DOI: 10.3390/molecules28052266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Recently, polyolefin thermoplastic elastomers can be obtained directly using ethylene as a single feedstock via α-diimine nickel-catalyzed ethylene chain walking polymerization. Here, a new range of bulky acenaphthene-based α-diimine nickel complexes with hybrid o-phenyl and -diarylmethyl anilines were constructed and applied to ethylene polymerization. All the nickel complexes under the activation of excess Et2AlCl exhibited good activity (level of 106 g mol-1 h-1) and produced polyethylene with high molecular weight (75.6-352.4 kg/mol) as well as proper branching densities (55-77/1000C). All the branched polyethylenes obtained exhibited high strain (704-1097%) and moderate to high stress (7-25 MPa) at break values. Most interestingly, the polyethylene produced by the methoxy-substituted nickel complex exhibited significantly lower molecular weights and branching densities, as well as significantly poorer strain recovery values (48% vs. 78-80%) than those by the other two complexes under the same conditions.
Collapse
Affiliation(s)
- Hui Wang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China
| | - Weiqing Lu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Mingmin Zou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shengyu Dai
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Correspondence: ; Tel.: +86-13955189794
| |
Collapse
|
3
|
Sun H, Fan H, Zhu C, Zou W, Dai S. Direct Synthesis of Partially Chain-Straightened Propylene Oligomers and P-MA Co-Oligomers Using Axially Flexible Shielded Iminopyridyl Palladium Complexes. Polymers (Basel) 2022; 15:111. [PMID: 36616461 PMCID: PMC9823751 DOI: 10.3390/polym15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
In this study, a series of partially chain-straightened propylene oligomers and functional propylene−methyl acrylate (P-MA) co-oligomers were synthesized with 8-alkyl-iminopyridyl Pd(II) catalysts. The molecular weight and polar monomer incorporation ratio could be tuned by using Pd(II) catalysts with various 8-alkyl-naphthyl substituents (8-alkyl: H, Me, and n-Bu). In propylene oligomerization, all the 8-alkyl-iminopyridyl Pd(II) catalysts convert propylene to partially chain-straightened (119−136/1000 C) oligomers with low molecular weights (0.3−1.5 kg/mol). Among the catalysts, Pd1 with non-substituent (H) on the ligand showed the highest activity of 5.4 × 104 g/((mol of Pd) h), generating oligomers with the lowest molecular weight (Mn: 0.3 kg/mol). Moreover, polar-functionalized propylene-MA co-oligomers with very high incorporation ratios (22.8−36.5 mol %) could be obtained in the copolymerization using these 8-alkyl-iminopyridyl Pd(II) catalysts. Additionally, Pd1 exhibited the best performance in propylene-MA copolymerization as it displayed the highest MA incorporation ratio of up to 36.5 mol%. All the three catalysts are capable of generating partially chain-straightened P-MA co-oligomers and the activities decrease gradually while the molecular weight increases with the increasing steric hindrance of the alkyl substituent (H < Me < n-Bu). Compared to Pd4 with the rigid 8-aryl substituent, the flexible 8-alkyl-iminopyridyl Pd(II) catalysts (Pd1-3) not only showed much higher activities in the propylene oligomerization, but also yielded P-MA co-oligomers with significantly higher incorporation ratios in the propylene co-oligomerization.
Collapse
Affiliation(s)
- Huayin Sun
- School of Chemical and Materials Engineering, Huainan Normal University, Huainan 232038, China
| | - Huijun Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Chuangao Zhu
- School of Chemical and Materials Engineering, Huainan Normal University, Huainan 232038, China
| | - Wenping Zou
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Liao YD, Cai Q, Dai SY. Synthesis of High Molecular Weight Polyethylene and E-MA Copolymers Using Iminopyridine Ni(II) and Pd(II) Complexes Containing a Flexible Backbone and Rigid Axial Substituents. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Mahmood Q, Li X, Qin L, Wang L, Sun WH. Structural evolution of iminopyridine support for nickel/palladium catalysts in ethylene (oligo)polymerization. Dalton Trans 2022; 51:14375-14407. [PMID: 36047748 DOI: 10.1039/d2dt02251f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interest in the late transition metal catalyst based design of new architectures of polyethylene (PE) has continuously been increasing over the last few years. The structure of these catalysts is predominantly important in controlling the morphological and architectural properties of the resulting polyethylene. Particularly, iminopyridine is a versatile bidentate support for Ni and Pd catalysts in ethylene (oligo)polymerization providing a wide variety of products ranging from volatile oligomers to ultra-high molecular weight polyethylene. Extensive structural modifications have been induced in the iminopyridine ligand through steric and electronic substitution, tuning the catalyst behavior in terms of activity and properties of the resulting polymer. Carbocyclic-fused iminopyridine and N-oxide iminopyridine are the new state of the art iminopyridine ligand designs. In this review, we aim to summarize all the developments in mononuclear iminopyridine-nickel and -palladium catalysts for ethylene (oligo)polymerization since the first report published in 1999 to present, focusing on the correlation among the pre-catalyst, co-catalyst type, thermal stability and polymer/oligomer structure. For comparison, the structural variations in the binuclear iminopyridine-nickel catalysts are also described. The detailed comparison of the structural variations in these catalysts with respect to their polymerization performance will give deep understanding in the development of new efficient catalyst designs.
Collapse
Affiliation(s)
- Qaiser Mahmood
- Guangdong Laboratory of Chemistry and Chemical Engineering, Shantou 515031, China.
| | - Xiaoxu Li
- Guangdong Laboratory of Chemistry and Chemical Engineering, Shantou 515031, China.
| | - Lidong Qin
- Guangdong Laboratory of Chemistry and Chemical Engineering, Shantou 515031, China.
| | - Luyao Wang
- Guangdong Laboratory of Chemistry and Chemical Engineering, Shantou 515031, China.
| | - Wen-Hua Sun
- Guangdong Laboratory of Chemistry and Chemical Engineering, Shantou 515031, China. .,Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Ding B, Chang G, Yan Z, Dai S. Ethylene (co) oligomerization using iminopyridyl Ni(II) and Pd(II) complexes bearing benzocycloalkyl moieties to access hyperbranched ethylene oligomers and ethylene-MA co-oligomers. Front Chem 2022; 10:961426. [PMID: 35991594 PMCID: PMC9386154 DOI: 10.3389/fchem.2022.961426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperbranched ethylene oligomers and polar functionalized co-oligomers synthesized via ethylene chain walking (co) oligomerization is a very attractive strategy. In this study, a series of dibenzhydryl iminopyridyl ligands with benzocycloalkyl and naphthyl moieties and the corresponding Ni(II) and Pd(II) complexes were synthesized and characterized. The Ni(II) complexes were highly effective in ethylene oligomerization and ethylene oligomers with hyperbranched microstructures were generated from this system. The corresponding Pd(II) complexes showed moderate oligomerization activities in ethylene oligomerization and hyperbranched ethylene oligomers were also yielded from the system. More significantly, the Pd(II) complexes can also effectively promote the co-oligomerization of ethylene with methyl acrylate (MA) to obtain hyperbranched polar functionalized ethylene-MA co-oligomers. The reaction temperature, catalyst ligand structure and metal type all have significant effects on ethylene (co) oligomerization with respect to catalytic activity, molecular weight and topology of the oligomers.
Collapse
Affiliation(s)
- Beihang Ding
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China
| | - Guanru Chang
- School of Chemistry and Chemical Engineering, Key Laboratory of Inorganic Functional Material, Huangshan University, Huangshan, China
| | - Zhengpeng Yan
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, China
| | - Shengyu Dai
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
7
|
Ethylene (Co)oligomerization in Alkane Solvents Facilitated by Rigid-Flexible Double-Layer Steric Strategy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Chen J, Yan Z, Li Z, Dai S. Direct Synthesis of Chain-End Toluene Functionalized Hyperbranched Ethylene Oligomers. Polymers (Basel) 2022; 14:3049. [PMID: 35956564 PMCID: PMC9370379 DOI: 10.3390/polym14153049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Chain-end functionalized polymers play an important role in the field of building complex macromolecular structures. In this study, we have synthesized and characterized four dibenzhydryl iminopyridine Ni(II) complexes bearing remote flexible substituents (Et and n-Bu) to provide hyperbranched ethylene oligomers in ethylene oligomerization with moderate to good activities. Most notably, toluene-end-functionalized hyperbranched ethylene oligomers were obtained under elevated temperature conditions and validated by NMR. The tandem catalysis of ethylene oligomerization and the subsequent Friedel-Crafts addition of the resulting unsaturated products to toluene molecules was proposed as the cause of the observed phenomenon.
Collapse
Affiliation(s)
- Jianhai Chen
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou University, Changzhou 213164, China;
| | - Zhengpeng Yan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China;
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Zhongyuan Li
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China;
| | - Shengyu Dai
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China;
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
9
|
Ge Y, Lu Z, Dai S. Flexible Axial Shielding Strategy for the Synthesis of High-Molecular-Weight Polyethylene and Polar Functionalized Polyethylene with Pyridine-Imine Ni(II) and Pd(II) Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- You Ge
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zhou Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Shengyu Dai
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
10
|
Ge Y, Cai Q, Wang Y, Gao J, Chi Y, Dai S. Synthesis of High-Molecular-Weight Branched Polyethylene Using a Hybrid "Sandwich" Pyridine-Imine Ni(II) Catalyst. Front Chem 2022; 10:886888. [PMID: 35601545 PMCID: PMC9114440 DOI: 10.3389/fchem.2022.886888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Most pyridine-imine Ni(II) and Pd(II) catalysts tend to yield low-molecular-weight polyethylene and ethylene-based copolymers in olefin insertion polymerization, as the unilateral axial steric structure of such complexes often cannot provide effective shielding of the metal center. In this study, we synthesized a series of hybrid "semi-sandwich" and "sandwich" type pyridine-imine Ni(II) complexes by incorporating diarylmethyl or dibenzosuberyl groups onto 8-aryl-naphthyl motif. The as-prepared Ni(II) complexes afforded highly branched polyethylene with high molecular weights (level of 105 g/mol), and moderate activities (level of 105 g/(molh)) in ethylene polymerization. Most interestingly, compared to "semi-sandwich" Ni(II) complexes bearing (2-diarylmethyl-8-aryl)naphthyl units, the "full-sandwich" counterpart containing (2-dibenzosuberyl-8-aryl)naphthyl motif was able to produce higher-molecular-weight polyethylene with higher branching density. In addition, the effect of remote non-conjugated electronic substituents in diarylmethyl groups of the Ni(II) system was also observed in ethylene polymerization.
Collapse
Affiliation(s)
- You Ge
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, China
| | - Qi Cai
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China
| | - Yuyin Wang
- Key Laboratory of Advanced Structural Materials of Ministry of Education, College of Material Science and Engineering, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, China
| | - Jiangang Gao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China
| | - Yue Chi
- Key Laboratory of Advanced Structural Materials of Ministry of Education, College of Material Science and Engineering, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, China
| | - Shengyu Dai
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, China
| |
Collapse
|
11
|
Direct synthesis of hyperbranched ethene oligomers and ethene‐
MA
co‐oligomers using iminopyridyl systems with weak neighboring group interactions. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Lu Z, Liao Y, Fan W, Dai S. Efficient suppression of the chain transfer reaction in ethylene coordination polymerization with dibenzosuberyl substituents. Polym Chem 2022. [DOI: 10.1039/d2py00282e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Catalysts with dibenzosuberyl substituents possess a superior ability to suppress chain transfer in ethylene (co)polymerization, producing high molecular weight polyethylenes and functionalized polyethylenes (ethylene-MA copolymers).
Collapse
Affiliation(s)
- Zhou Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Yudan Liao
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
13
|
Yan Z, Bi H, Ding B, Wang H, Xu G, Dai S. A rigid-flexible double-layer steric strategy for ethylene (co)oligomerization with pyridine-imine Ni( ii) and Pd( ii) complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj00183g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rigid-flexible double-layer steric strategy enhances the molecular weight of the resulting ethylene oligomers and promotes the co-oligomerization of ethylene and methyl acrylate.
Collapse
Affiliation(s)
- Zhengpeng Yan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Huiqin Bi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Beihang Ding
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Hui Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Guoyong Xu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|