1
|
Zhang Y, Liu Z, Hirschi M, Brodsky O, Johnson E, Won SJ, Nagata A, Bezwada D, Petroski MD, Majmudar JD, Niessen S, VanArsdale T, Gilbert AM, Hayward MM, Stewart AE, Nager AR, Melillo B, Cravatt BF. An allosteric cyclin E-CDK2 site mapped by paralog hopping with covalent probes. Nat Chem Biol 2025; 21:420-431. [PMID: 39294320 PMCID: PMC11867888 DOI: 10.1038/s41589-024-01738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
More than half of the ~20,000 protein-encoding human genes have paralogs. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to subsets of paralogous proteins. Here we explore whether such covalent compound-cysteine interactions can be used to discover ligandable pockets in paralogs lacking the cysteine. Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we substituted the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide-CCNE1-N112C interaction into in vitro NanoBRET (bioluminescence resonance energy transfer) and in cellulo activity-based protein profiling assays capable of identifying compounds that reversibly inhibit both the N112C mutant and wild-type CCNE1:CDK2 (cyclin-dependent kinase 2) complexes. X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings, thus, show how electrophile-cysteine interactions mapped by chemical proteomics can extend the understanding of protein ligandability beyond covalent chemistry.
Collapse
Affiliation(s)
- Yuanjin Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Zhonglin Liu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Marscha Hirschi
- Medicine Design, Pfizer Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Oleg Brodsky
- Medicine Design, Pfizer Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Eric Johnson
- Medicine Design, Pfizer Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Asako Nagata
- Medicine Design, Pfizer Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Divya Bezwada
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Jaimeen D Majmudar
- Discovery Sciences, Pfizer Research and Development, Pfizer, Inc., Cambridge, MA, USA
| | - Sherry Niessen
- Oncology Research and Development, Pfizer, Inc., La Jolla, CA, USA
- Belharra Therapeutics, San Diego, CA, USA
| | - Todd VanArsdale
- Oncology Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Adam M Gilbert
- Discovery Sciences, Pfizer Research and Development, Pfizer, Inc., Groton, CT, USA
| | - Matthew M Hayward
- Discovery Sciences, Pfizer Research and Development, Pfizer, Inc., Groton, CT, USA
- Magnet Biomedicine, Boston, MA, USA
| | - Al E Stewart
- Medicine Design, Pfizer Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Andrew R Nager
- Oncology Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Niphakis MJ, Cravatt BF. Ligand discovery by activity-based protein profiling. Cell Chem Biol 2024; 31:1636-1651. [PMID: 39303700 DOI: 10.1016/j.chembiol.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Genomic technologies have led to massive gains in our understanding of human gene function and disease relevance. Chemical biologists are a primary beneficiary of this information, which can guide the prioritization of proteins for chemical probe and drug development. The vast functional and structural diversity of disease-relevant proteins, however, presents challenges for conventional small molecule screening libraries and assay development that in turn raise questions about the broader "druggability" of the human proteome. Here, we posit that activity-based protein profiling (ABPP), by generating global maps of small molecule-protein interactions in native biological systems, is well positioned to address major obstacles in human biology-guided chemical probe and drug discovery. We will support this viewpoint with case studies highlighting a range of small molecule mechanisms illuminated by ABPP that include the disruption and stabilization of biomolecular (protein-protein/nucleic acid) interactions and underscore allostery as a rich source of chemical tools for historically "undruggable" protein classes.
Collapse
|
3
|
Zhang Y, Liu Z, Hirschi M, Brodsky O, Johnson E, Won SJ, Nagata A, Petroski MD, Majmudar JD, Niessen S, VanArsdale T, Gilbert AM, Hayward MM, Stewart AE, Nager AR, Melillo B, Cravatt B. Expanding the ligandable proteome by paralog hopping with covalent probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576274. [PMID: 38293178 PMCID: PMC10827202 DOI: 10.1101/2024.01.18.576274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
More than half of the ~20,000 protein-encoding human genes have at least one paralog. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to a subset of paralogous proteins. Here, we explore whether such covalent compound-cysteine interactions can be used to discover ligandable pockets in paralogs that lack the cysteine. Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we mutated the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling (ABPP) that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide-N112C-CCNE1 interaction into a NanoBRET-ABPP assay capable of identifying compounds that reversibly inhibit both N112C- and WT-CCNE1:CDK2 complexes. X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings thus provide a roadmap for leveraging electrophile-cysteine interactions to extend the ligandability of the proteome beyond covalent chemistry.
Collapse
Affiliation(s)
- Yuanjin Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Zhonglin Liu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Marsha Hirschi
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Oleg Brodsky
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Eric Johnson
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Asako Nagata
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | | | - Jaimeen D. Majmudar
- Discovery Sciences, Pfizer Research and Development, Pfizer Inc., Cambridge, MA 02139, USA
| | - Sherry Niessen
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
- Current address: Belharra Therapeutics, 3985 Sorrento Valley Blvd suite c, San Diego, CA 92121
| | - Todd VanArsdale
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Adam M. Gilbert
- Discovery Sciences, Pfizer Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Matthew M. Hayward
- Discovery Sciences, Pfizer Research and Development, Pfizer Inc., Groton, CT 06340, USA
- Current address: Magnet Biomedicine, 321 Harrison Ave., Suite 600, Boston, MA 02118, USA
| | - Al E. Stewart
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Andrew R. Nager
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Benjamin Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| |
Collapse
|