1
|
Cajigas S, de Jong AM, Yan J, Prins MWJ. Understanding Fast and Slow Signal Changes in a Competitive Particle-Based Continuous Biosensor. Anal Chem 2025. [PMID: 40492980 DOI: 10.1021/acs.analchem.5c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
The development of continuous biosensing technologies requires studies on time-dependent changes in sensor properties because such changes can impact the analytical performance of the sensor. In previous work, we studied long-term changes of a continuous cortisol sensor based on particle motion, which highlighted the roles of molecular loss processes in the biosensor. In this work, we study a glycoalkaloid sensor and observe two characteristic behaviors, namely fast and slow signal changes. Experiments were performed with single-sided aging, motion pattern analysis, and different blocking conditions. The leading hypotheses from this paper are that (i) fast signal changes predominantly result from multivalent interactions between the particle and the sensing surface, and (ii) slow signal changes arise from the gradual dissociation of analogue molecules from the sensing surface. The results give pointers for enabling long-term continuous sensing using particle-based biosensors.
Collapse
Affiliation(s)
- Sebastian Cajigas
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
| | - Arthur M de Jong
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
| | - Junhong Yan
- Helia Biomonitoring, 5612 AR, Eindhoven, The Netherlands
| | - Menno W J Prins
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Helia Biomonitoring, 5612 AR, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Michielsen CS, Lin YT, Yan J, de Jong AM, Prins MWJ. Continuous Protein Sensing Using Fast-Dissociating Antibody Fragments in Competition-Based Biosensing by Particle Motion. ACS Sens 2025; 10:2895-2905. [PMID: 40126441 PMCID: PMC12038830 DOI: 10.1021/acssensors.4c03637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Sensing technologies for the continuous monitoring of protein concentrations are important for understanding time-dependent behaviors of biological systems and for controlling bioprocesses. We present a continuous sensing methodology based on tethered particle motion (t-BPM) that utilizes fast-dissociating antibody fragments (Fabs) for continuous protein monitoring. A competition-based t-BPM sensor was developed and characterized utilizing custom-made Fabs. The sensing concept was demonstrated for lactoferrin, an 80 kDa iron-binding glycoprotein that is part of the innate immune response. Thirteen Fabs were compared using free particle motion sensing as well as surface plasmon resonance, of which six Fabs showed rapid association and dissociation. The integration of the Fabs into the t-BPM sensor enabled nanomolar lactoferrin detection in both buffer solutions and milk matrices over tens of hours. This work demonstrates how continuous protein sensing can be realized using fast-dissociating antibodies in a competitive sensor format.
Collapse
Affiliation(s)
- Claire
M. S. Michielsen
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, the Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, the Netherlands
| | - Yu-Ting Lin
- Helia
Biomonitoring, Eindhoven 5612 AE, the Netherlands
| | - Junhong Yan
- Helia
Biomonitoring, Eindhoven 5612 AE, the Netherlands
| | - Arthur M. de Jong
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612 AE, the Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, the Netherlands
| | - Menno W. J. Prins
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, the Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612 AE, the Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, the Netherlands
- Helia
Biomonitoring, Eindhoven 5612 AE, the Netherlands
| |
Collapse
|
3
|
Jin J, Wu L, Gao Y, Ma G. Quantification and Mitigation of Site-Preferred Nonspecific Interactions in Single-Nanoparticle Biosensors. ACS Sens 2025; 10:2258-2265. [PMID: 40096541 DOI: 10.1021/acssensors.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Understanding the origin and behavior of nonspecific interactions is essential for advancing biosensing technologies. In this study, we investigate nonspecific interactions between a functionalized single nanoparticle (NP) and a sensor surface. The NP, tethered by a single DNA molecule, exhibits flexible motion that allows it to interact with the surface. Using surface plasmon resonance microscopy (SPRM) with nanometer precision, we tracked the motion dynamics of the NP and revealed that nonspecific binding leads to repeated transient trapping at the surface. The NP shows a preference for interacting with a particular site, indicating site-preferred nonspecific interactions. This behavior mimics specific binding events, emphasizing the need to mitigate such effects in biosensors. By systematically varying NP size, ionic strength, solution viscosity, blocking agents, and applying external forces, we identified external force as the most effective factor in reducing such nonspecific interactions. We hope these insights can provide strategies for designing next-generation single-NP and single-molecule biosensors with minimal nonspecific signals, thereby enhancing detection reliability.
Collapse
Affiliation(s)
- Jiayi Jin
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Liwei Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yushi Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Guangzhong Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Vu C, Yan J, de Jong AM, Prins MWJ. How Highly Heterogeneous Sensors with Single-Molecule Resolution can Result in Robust Continuous Monitoring Over Long Time Spans. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412181. [PMID: 39716982 PMCID: PMC11831471 DOI: 10.1002/advs.202412181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Biomolecular sensors with single-molecule resolution are composed of multitudes of transducers that measure state changes related to single-molecular binding and unbinding events. Conventionally, signals are aggregated from many individual transducers in order to achieve sufficient statistics. However, by aggregating signals, transducer-to-transducer differences are lost and heterogeneities cannot be studied. Here, transducers with single-molecule resolution over long time spans are studied, enabling the collection of sufficient statistics from independent transducers. This allows comparisons between transducers that reveal fundamental heterogeneities in their molecular assemblies related to stochastic variations. The study is performed with biosensing by particle motion, a sensing methodology with thousands of particles that dynamically interact with a sensing surface. The signals of individual particles are studied for series of modulations of analyte concentration over 25 h. The results show large differences in individual concentration-dependent responses. Monte Carlo simulations clarify that heterogeneities can be attributed to stochastic fluctuations in the numbers of binder molecules, and that gradual changes of the response characteristics can be related to losses of molecules in the single-particle transducers. The results give insights into molecular and temporal heterogeneities of continuous transducers with single-molecule resolution and explain how sensors can be engineered to achieve robust, precise, and stable biomolecular monitoring.
Collapse
Affiliation(s)
- Chris Vu
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 AZThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5612 AZThe Netherlands
| | - Junhong Yan
- Helia Biomonitoring BVEindhoven5612 ARThe Netherlands
| | - Arthur M. de Jong
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5612 AZThe Netherlands
- Department of Applied Physics and Science EducationEindhoven University of TechnologyEindhoven5612 AZThe Netherlands
| | - Menno W. J. Prins
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 AZThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5612 AZThe Netherlands
- Helia Biomonitoring BVEindhoven5612 ARThe Netherlands
- Department of Applied Physics and Science EducationEindhoven University of TechnologyEindhoven5612 AZThe Netherlands
| |
Collapse
|
5
|
Gouveia G, Saateh A, Swietlikowska A, Scarpellini C, Tsang E, Altug H, Merkx M, Dillen A, Leirs K, Spasic D, Lammertyn J, Gothelf KV, Bonedeau E, Porzberg N, Smeets RL, Koenen HJPM, Prins MWJ, de Jonge MI. Continuous Biosensing to Monitor Acute Systemic Inflammation, a Diagnostic Need for Therapeutic Guidance. ACS Sens 2025; 10:4-14. [PMID: 39692622 PMCID: PMC11773571 DOI: 10.1021/acssensors.4c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Continuous monitoring of acute inflammation can become a very important next step for guiding therapeutic interventions in severely ill patients. This Perspective discusses the current medical need for patients with acute inflammatory diseases and the potential of continuous biosensing technologies. First, we discuss biomarkers that could help to monitor the state of a patient with acute systemic inflammation based on theoretical studies and empirical data. Then, based on the state of the art, we describe sensing strategies that could be applied for the continuous monitoring of acute inflammatory biomarkers, followed by challenges that must be overcome. Nanoswitch-based continuous biosensors enable suitable measurement frequencies but still lack sensitivity, while regeneration risks lower sensor reliability. Developments are still needed in bioreceptors and molecular architectures, regeneration techniques, combined with suitable sampling and sample pretreatment methods, for bringing continuous biosensing of inflammation closer to reality. Furthermore, collaborations between healthcare professionals and scientists, regulatory bodies, and biosensor engineers are needed for a successful translation of sensing technologies from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Guilherme Gouveia
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Abtin Saateh
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Anna Swietlikowska
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
| | - Claudia Scarpellini
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Emily Tsang
- Department
of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000 C, Denmark
| | - Hatice Altug
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Maarten Merkx
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
| | - Annelies Dillen
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Karen Leirs
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Kurt V. Gothelf
- Department
of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000 C, Denmark
| | - Estelle Bonedeau
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nicola Porzberg
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ruben L. Smeets
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
- Department
of Laboratory Medicine, Radboudumc Laboratory for Diagnostics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Hans J. P. M. Koenen
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Menno W. J. Prins
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5600MB, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5600MB, The Netherlands
- Helia Biomonitoring, De Lismortel 31, 5612 AR Eindhoven, The Netherlands
| | - Marien I. de Jonge
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
6
|
Saateh A, Ansaryan S, Gao J, de Miranda LO, Zijlstra P, Altug H. Long-Term and Continuous Plasmonic Oligonucleotide Monitoring Enabled by Regeneration Approach. Angew Chem Int Ed Engl 2024; 63:e202410076. [PMID: 39146470 DOI: 10.1002/anie.202410076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
The demand for continuous monitoring of biochemical markers for diagnostic purposes is increasing as it overcomes the limitations of traditional intermittent measurements. This study introduces a method for long-term, continuous plasmonic biosensing of oligonucleotides with high temporal resolution. Our method is based on a regeneration-based reversibility approach that ensures rapid reversibility in less than 1 minute, allowing the sensor to fully reset after each measurement. We investigated label-free and AuNP enhancements for different dynamic ranges and sensitivities, achieving a limit of detection down to pM levels. We developed a regeneration-based reversibility approach for continuous biosensing, optimizing buffer conditions using the Taguchi method to achieve rapid, consistent reversibility, ensuring reliable performance for long-term monitoring. We detected oligonucleotides in buffered and complex solutions, including undiluted and unfiltered human serum, for up to 100 sampling cycles in a day. Moreover, we showed the long-term stability of the sensor for monitoring capabilities in buffered solutions and human serum, with minimal signal value drift and excellent sensor reversibility for up to 9 days. Our method opens the door to new prospects in continuous biosensing by providing insights beyond intermittent measurements for numerous analytical and diagnostic applications.
Collapse
Affiliation(s)
- Abtin Saateh
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Saeid Ansaryan
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jiarui Gao
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Livio Oliveira de Miranda
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Peter Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
7
|
Luo Q, Zeng Q, Wang C, Zhang C, Yu H, Yang Y, Guan X. Ultrasensitive Single-Molecule Biosensor by Periodic Modulation of Magnetic Particle Motion. NANO LETTERS 2024; 24:13998-14003. [PMID: 39441689 DOI: 10.1021/acs.nanolett.4c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ultrasensitive detection of low-abundance biomarkers by modern single-molecule technologies is critical for better diagnosis of severe diseases, but inevitable nonspecific bindings often cause fluctuations in the single-molecule counting results. Here we present an approach to improve the specificity in a single-molecule immunoassay by translating molecular binding signals into periodic nanomotion of magnetic particles. The sandwiched immunoassay is modified by using a long linker to tether one antibody onto a gold-covered substrate and a magnetic particle with another antibody coated as the reporter. By actively oscillating the particles with alternating magnetic fields, we could reliably identify specific binding through intensity fluctuation in plasmonic images of single particles. As a proof of concept, we demonstrate the detection of IFN-γ at the femtomolar level by the digital counting of specifically bound molecules. This active strategy outperforms existing passive motion-based approaches in sensitivity and speed, paving the way for disease diagnosis with low-abundance biomarkers.
Collapse
Affiliation(s)
- Qingqing Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiang Zeng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chen Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Cheng Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuting Yang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xinping Guan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
8
|
Williamson HK, Mendes PM. An integrated perspective on measuring cytokines to inform CAR-T bioprocessing. Biotechnol Adv 2024; 75:108405. [PMID: 38997052 DOI: 10.1016/j.biotechadv.2024.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Chimeric antigen receptor (CAR)-T cells are emerging as a generation-defining therapeutic however their manufacture remains a major barrier to meeting increased market demand. Monitoring critical quality attributes (CQAs) and critical process parameters (CPPs) during manufacture would vastly enrich acquired information related to the process and product, providing feedback to enable real-time decision making. Here we identify specific CAR-T cytokines as value-adding analytes and discuss their roles as plausible CPPs and CQAs. High sensitivity sensing technologies which can be easily integrated into manufacture workflows are essential to implement real-time monitoring of these cytokines. We therefore present biosensors as enabling technologies and evaluate recent advancements in cytokine detection in cell cultures, offering promising translatability to CAR-T biomanufacture. Finally, we outline emerging sensing technologies with future promise, and provide an overall outlook on existing gaps to implementation and the optimal sensing platform to enable cytokine monitoring in CAR-T biomanufacture.
Collapse
Affiliation(s)
- Hannah K Williamson
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Serres S, Tardin C, Salomé L. Digital One-Step Competitive Detection of a Small Molecule in Synthetic and Environmental Waters. Anal Chem 2024; 96:15521-15525. [PMID: 39284000 DOI: 10.1021/acs.analchem.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Optical methods for single-molecule analysis hold the promise of accurate, sensitive, and rapid detection of target molecules. Here, we demonstrate the efficiency of such an approach for the competitive detection of small molecules in water. Our biosensing method is based on a combination of a single-DNA biochip for the parallelization of tethered particle motion real-time measurements with antibodies and modified targets as molecular competitors. The antibodies are coupled to the particles tethered to the surface by a long DNA bearing in its middle the molecular competitor bound to the antibodies. Competitive target binding leads to a detectable conformational change of the DNA tethers from looped to unlooped in proportions related to the target concentration. We thus managed to detect fluorescein, chosen as a model of a target molecule, in freshwater of various qualities, from solutions prepared with ultrapure water to more complex matrices such as river water and wastewater treatment plant effluent samples. Similar dose-response curves were obtained under these various conditions in a wide range of concentrations from nanomolar to micromolar with a limit of detection around 2 nM.
Collapse
Affiliation(s)
- Sandra Serres
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse 31077, France
| | - Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse 31077, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse 31077, France
| |
Collapse
|
10
|
Lubken R, Lin YT, Haenen SRR, Bergkamp MH, Yan J, Nommensen PA, Prins MWJ. Continuous Biosensor Based on Particle Motion: How Does the Concentration Measurement Precision Depend on Time Scale? ACS Sens 2024; 9:4924-4933. [PMID: 39166946 PMCID: PMC11443519 DOI: 10.1021/acssensors.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Continuous biosensors measure concentration-time profiles of biomolecular substances in order to allow for comparisons of measurement data over long periods of time. To make meaningful comparisons of time-dependent data, it is essential to understand how measurement imprecision depends on the time interval between two evaluation points, as the applicable imprecision determines the significance of measured concentration differences. Here, we define a set of measurement imprecisions that relate to different sources of variation and different time scales, ranging from minutes to weeks, and study these using statistical analyses of measurement data. The methodology is exemplified for Biosensing by Particle Motion (BPM), a continuous, affinity-based sensing technology with single-particle and single-molecule resolution. The studied BPM sensor measures specific small molecules (glycoalkaloids) in an industrial food matrix (potato fruit juice). Measurements were performed over several months at two different locations, on nearly 50 sensor cartridges with in total more than 1000 fluid injections. Statistical analyses of the measured signals and concentrations show that the relative residuals are normally distributed, allowing extraction and comparisons of the proposed imprecision parameters. The results indicate that sensor noise is the most important source of variation followed by sample pretreatment. Variations caused by fluidic transport, changes of the sensor during use (drift), and variations due to different sensor cartridges and cartridge replacements appear to be small. The imprecision due to sensor noise is recorded over few-minute time scales and is attributed to stochastic fluctuations of the single-molecule measurement principle, false-positive signals in the signal processing, and nonspecific interactions. The developed methodology elucidates both time-dependent and time-independent factors in the measurement imprecision, providing essential knowledge for interpreting concentration-time profiles as well as for further development of continuous biosensing technologies.
Collapse
Affiliation(s)
| | - Yu-Ting Lin
- Helia
Biomonitoring, Eindhoven 5612 AR, The Netherlands
| | | | | | - Junhong Yan
- Helia
Biomonitoring, Eindhoven 5612 AR, The Netherlands
| | | | - Menno W. J. Prins
- Helia
Biomonitoring, Eindhoven 5612 AR, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AZ, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AZ, The Netherlands
| |
Collapse
|
11
|
Miyagawa A, Ito C, Ueda Y, Nagatomo S, Nakatani K. DNA sensing based on aggregation of Janus particles using dynamic light scattering. Anal Chim Acta 2024; 1318:342933. [PMID: 39067936 DOI: 10.1016/j.aca.2024.342933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The aggregation of isotropic particles through interparticle reactions poses a challenge in control due to the ability of all surfaces to bind to each other, rendering the quantitative detection of such interparticle reactions based on particle size difficult. Here, we proposed a novel detection scheme for DNA utilizing an assembly of Janus particles (JPs) employing dynamic light scattering (DLS). DNA molecules are tethered on one hemisphere of the JP, while the other hemisphere retains its hydrophobic properties. RESULTS Aggregation of JPs was induced by the sandwich hybridization of target DNA between them. The assembly of JPs was effectively monitored by the changes in hydrodynamic diameter detected by DLS, revealing that aggregation peaks at 2-3 particles and further reaction was hindered due to the inability of one hemisphere of the JP to interact with another JP. The target DNA demonstrated detectability at concentrations as low as several tens of pM to several nM using a digital sensing method. The two types of target DNA, such as simple (14 base pairs) and HIV-2 specific sequences (20 base pairs) were detectable at nM and pM levels, respectively. Moreover, we substantiated the robustness of our detection scheme through stoichiometric calculations based on an equilibrium model. The present detection mechanism was well explained based on the binding affinity of DNA hybridization. SIGNIFICANCE This detection method harnesses the anisotropic nature of JPs and represents the first detection approach based on aggregation. By altering the modification molecules on JPs to match target molecules, such as proteins and organic compounds, a wide range of versatile molecules can be detected using this scheme with high sensitivity. This underscores the broad applicability of the present method.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Chisa Ito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuyuki Ueda
- Institute of Quantum Life Science, National Institute for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kiyoharu Nakatani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
12
|
Cajigas S, de Jong AM, Yan J, Prins MWJ. Molecular Origins of Long-Term Changes in a Competitive Continuous Biosensor with Single-Molecule Resolution. ACS Sens 2024; 9:3520-3530. [PMID: 38967449 PMCID: PMC11287755 DOI: 10.1021/acssensors.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Biosensing by particle motion is a biosensing technology that relies on single-molecule interactions and enables the continuous monitoring of analytes from picomolar to micromolar concentration levels. However, during sensor operation, the signals are observed to change gradually. Here, we present a comprehensive methodology to elucidate the molecular origins of long-term changes in a particle motion sensor, focusing on a competitive sensor design under conditions without flow. Experiments were performed wherein only the particles or only the surfaces were aged in order to clarify how each individual component changes over time. Furthermore, distributions of particle motion patterns and switching activity were studied to reveal how particle populations change over timespans of several days. For a cortisol sensor with anticortisol antibodies on the particles and cortisol analogues on the sensing surface, the leading hypotheses for the long-term changes are (i) that the particles lose antibodies and develop nonspecific interactions and (ii) that analogue molecules dissociate from the sensing surface. The developed methodologies and the acquired insights pave a way for realizing sensors that can operate over long timespans.
Collapse
Affiliation(s)
- Sebastian Cajigas
- Helia
Biomonitoring, 5612 AR Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Arthur M. de Jong
- Department
of Applied Physics, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Junhong Yan
- Helia
Biomonitoring, 5612 AR Eindhoven, The Netherlands
| | - Menno W. J. Prins
- Helia
Biomonitoring, 5612 AR Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
13
|
Michielsen CS, Buskermolen AD, de Jong AM, Prins MWJ. Sandwich Immunosensor Based on Particle Motion: How Do Reactant Concentrations and Reaction Pathways Determine the Time-Dependent Response of the Sensor? ACS Sens 2023; 8:4216-4225. [PMID: 37955441 PMCID: PMC10683507 DOI: 10.1021/acssensors.3c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
To control and optimize the speed of a molecular biosensor, it is crucial to quantify and understand the mechanisms that underlie the time-dependent response of the sensor. Here, we study how the kinetic properties of a particle-based sandwich immunosensor depend on underlying parameters, such as reactant concentrations and the size of the reaction chamber. The data of the measured sensor responses could be fitted with single-exponential curves, with characteristic response times that depend on the analyte concentration and the binder concentrations on the particle and substrate. By comparing characteristic response times at different incubation configurations, the data clarifies how two distinct reaction pathways play a role in the sandwich immunosensor, namely, analyte binding first to particles and thereafter to the substrate, and analyte binding first to the substrate and thereafter to a particle. For a concrete biosensor design, we found that the biosensor is dominated by the reaction pathway where analyte molecules bind first to the substrate and thereafter to a particle. Within this pathway, the binding of a particle to the substrate-bound analyte dominates the sensor response time. Thus, the probability of a particle interacting with the substrate was identified as the main direction to improve the speed of the biosensor while maintaining good sensitivity. We expect that the developed immunosensor and research methodology can be generally applied to understand the reaction mechanisms and optimize the kinetic properties of sandwich immunosensors with particle labels.
Collapse
Affiliation(s)
- Claire
M. S. Michielsen
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
| | - Alissa D. Buskermolen
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
| | - Arthur M. de Jong
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
| | - Menno W. J. Prins
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
- Helia
Biomonitoring, Eindhoven 5612 AR, The Netherlands
| |
Collapse
|
14
|
Bergkamp MH, Cajigas S, van IJzendoorn LJ, Prins MWJ. Real-time continuous monitoring of dynamic concentration profiles studied with biosensing by particle motion. LAB ON A CHIP 2023; 23:4600-4609. [PMID: 37772830 DOI: 10.1039/d3lc00410d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Real-time monitoring-and-control of biological systems requires lab-on-a-chip sensors that are able to accurately measure concentration-time profiles with a well-defined time delay and accuracy using only small amounts of sampled fluid. Here, we study real-time continuous monitoring of dynamic concentration profiles in a microfluidic measurement chamber. Step functions and sinusoidal oscillations of concentrations were generated using two pumps and a herringbone mixer. Concentrations in the bulk of the measurement chamber were quantified using a solution with a dye and light absorbance measurements. Concentrations near the surface were measured using a reversible cortisol sensor based on particle motion. The experiments show how the total time delay of the real-time sensor has contributions from advection, diffusion, reaction kinetics at the surface and signal processing. The total time delay of the studied real-time cortisol sensor was ∼90 seconds for measuring 63% of the concentration change. Monitoring of sinusoidal cortisol concentration-time profiles showed that the sensor has a low-pass frequency response with a cutoff frequency of ∼4 mHz and a lag time of ∼60 seconds. The described experimental methodology paves the way for the development of monitoring-and-control in lab-on-a-chip systems and for further engineering of the analytical characteristics of real-time continuous biosensors.
Collapse
Affiliation(s)
- Max H Bergkamp
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | | | - Leo J van IJzendoorn
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Menno W J Prins
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands.
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Helia Biomonitoring, 5612 AR Eindhoven, The Netherlands
| |
Collapse
|
15
|
Bergkamp MH, Cajigas S, van IJzendoorn LJ, Prins MW. High-Throughput Single-Molecule Sensors: How Can the Signals Be Analyzed in Real Time for Achieving Real-Time Continuous Biosensing? ACS Sens 2023; 8:2271-2281. [PMID: 37216442 PMCID: PMC10294250 DOI: 10.1021/acssensors.3c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Single-molecule sensors collect statistics of single-molecule interactions, and the resulting data can be used to determine concentrations of analyte molecules. The assays are generally end-point assays and are not designed for continuous biosensing. For continuous biosensing, a single-molecule sensor needs to be reversible, and the signals should be analyzed in real time in order to continuously report output signals, with a well-controlled time delay and measurement precision. Here, we describe a signal processing architecture for real-time continuous biosensing based on high-throughput single-molecule sensors. The key aspect of the architecture is the parallel computation of multiple measurement blocks that enables continuous measurements over an endless time span. Continuous biosensing is demonstrated for a single-molecule sensor with 10,000 individual particles that are tracked as a function of time. The continuous analysis includes particle identification, particle tracking, drift correction, and detection of the discrete timepoints where individual particles switch between bound and unbound states, yielding state transition statistics that relate to the analyte concentration in solution. The continuous real-time sensing and computation were studied for a reversible cortisol competitive immunosensor, showing how the precision and time delay of cortisol monitoring are controlled by the number of analyzed particles and the size of the measurement blocks. Finally, we discuss how the presented signal processing architecture can be applied to various single-molecule measurement methods, allowing these to be developed into continuous biosensors.
Collapse
Affiliation(s)
- Max H. Bergkamp
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
| | | | - Leo J. van IJzendoorn
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
| | - Menno W.J. Prins
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
- Helia
Biomonitoring, Eindhoven 5612 AR, The Netherlands
| |
Collapse
|
16
|
Vu C, Lin YT, Haenen SRR, Marschall J, Hummel A, Wouters SFA, Raats JMH, de Jong AM, Yan J, Prins MWJ. Real-Time Immunosensor for Small-Molecule Monitoring in Industrial Food Processes. Anal Chem 2023; 95:7950-7959. [PMID: 37178186 DOI: 10.1021/acs.analchem.3c00628] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Industrial food processes are monitored to ensure that food is being produced with good quality, yield, and productivity. For developing innovative real-time monitoring and control strategies, real-time sensors are needed that can continuously report chemical and biochemical data of the manufacturing process. Here, we describe a generalizable methodology to develop affinity-based biosensors for the continuous monitoring of small molecules in industrial food processes. Phage-display antibody fragments were developed for the measurement of small molecules, as exemplified with the measurement of glycoalkaloids (GAs) in potato fruit juice. The recombinant antibodies were selected for use in a competition-based biosensor with single-molecule resolution, called biosensing by particle motion, using assay architectures with free particles as well as tethered particles. The resulting sensor measures GAs in the micromolar range, is reversible, has a measurement response time below 5 min, and enables continuous monitoring of GAs in protein-rich solutions for more than 20 h with concentration measurement errors below 15%. The demonstrated biosensor gives the perspective to enable a variety of monitoring and control strategies based on continuous measurement of small molecules in industrial food processes.
Collapse
Affiliation(s)
- Chris Vu
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Yu-Ting Lin
- Helia Biomonitoring, 5612 AR Eindhoven, The Netherlands
| | | | | | | | | | | | - Arthur M de Jong
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Junhong Yan
- Helia Biomonitoring, 5612 AR Eindhoven, The Netherlands
| | - Menno W J Prins
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Helia Biomonitoring, 5612 AR Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
17
|
Vis MAM, de Wildt BWM, Ito K, Hofmann S. A dialysis medium refreshment cell culture set-up for an osteoblast-osteoclast coculture. Biotechnol Bioeng 2023; 120:1120-1132. [PMID: 36539392 DOI: 10.1002/bit.28314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Culture medium exchange leads to loss of valuable auto- and paracrine factors produced by the cells. However, frequent renewal of culture medium is necessary for nutrient supply and to prevent waste product accumulation. Thus it remains the gold standard in cell culture applications. The use of dialysis as a medium refreshment method could provide a solution as low molecular weight molecules such as nutrients and waste products could easily be exchanged, while high molecular weight components such as growth factors, used in cell interactions, could be maintained in the cell culture compartment. This study investigates a dialysis culture approach for an in vitro bone remodeling model. In this model, both the differentiation of human mesenchymal stromal cells (MSCs) into osteoblasts and monocytes (MCs) into osteoclasts is studied. A custom-made simple dialysis culture system with a commercially available cellulose dialysis insert was developed. The data reported here revealed increased osteoblastic and osteoclastic activity in the dialysis groups compared to the standard nondialysis groups, mainly shown by significantly higher alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activity, respectively. This simple culture system has the potential to create a more efficient microenvironment allowing for cell interactions via secreted factors in mono- and cocultures and could be applied for many other tissues.
Collapse
Affiliation(s)
- Michelle Anna Maria Vis
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bregje Wilhelmina Maria de Wildt
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
18
|
Fan W, Dong Y, Ren W, Liu C. Single microentity analysis-based ultrasensitive bioassays: Recent advances, applications, and perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
19
|
Dey S, Dolci M, Zijlstra P. Single-Molecule Optical Biosensing: Recent Advances and Future Challenges. ACS PHYSICAL CHEMISTRY AU 2023; 3:143-156. [PMID: 36968450 PMCID: PMC10037498 DOI: 10.1021/acsphyschemau.2c00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
In recent years, the sensitivity and specificity of optical sensors has improved tremendously due to improvements in biochemical functionalization protocols and optical detection systems. As a result, single-molecule sensitivity has been reported in a range of biosensing assay formats. In this Perspective, we summarize optical sensors that achieve single-molecule sensitivity in direct label-free assays, sandwich assays, and competitive assays. We describe the advantages and disadvantages of single-molecule assays and summarize future challenges in the field including their optical miniaturization and integration, multimodal sensing capabilities, accessible time scales, and compatibility with real-life matrices such as biological fluids. We conclude by highlighting the possible application areas of optical single-molecule sensors that include not only healthcare but also the monitoring of the environment and industrial processes.
Collapse
Affiliation(s)
- Swayandipta Dey
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| | - Mathias Dolci
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| | - Peter Zijlstra
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
20
|
van Smeden L, Saris A, Sergelen K, de Jong AM, Yan J, Prins MWJ. Reversible Immunosensor for the Continuous Monitoring of Cortisol in Blood Plasma Sampled with Microdialysis. ACS Sens 2022; 7:3041-3048. [PMID: 36255855 PMCID: PMC9623578 DOI: 10.1021/acssensors.2c01358] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cortisol is a steroid hormone involved in a wide range of medical conditions. The level of the hormone fluctuates over time, but with traditional laboratory-based assays, such dynamics cannot be monitored in real time. Here, a reversible cortisol sensor is reported that allows continuous monitoring of cortisol in blood plasma using sampling by microdialysis. The sensor is based on measuring single-molecule binding and unbinding events of tethered particles. The particles are functionalized with antibodies and the substrate with cortisol-analogues, causing binding and unbinding events to occur between particles and substrate. The frequency of binding events is reduced when cortisol is present in the solution as it blocks the binding sites of the antibodies. The sensor responds to cortisol in the high nanomolar to low micromolar range and can monitor cortisol concentrations over multiple hours. Results are shown for cortisol monitoring in filtered and in microdialysis-sampled human blood plasma.
Collapse
Affiliation(s)
- Laura van Smeden
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MBEindhoven, The Netherlands,Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MBEindhoven, The Netherlands
| | - Annet Saris
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MBEindhoven, The Netherlands
| | - Khulan Sergelen
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MBEindhoven, The Netherlands,Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MBEindhoven, The Netherlands
| | - Arthur M. de Jong
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MBEindhoven, The Netherlands,Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MBEindhoven, The Netherlands
| | - Junhong Yan
- Helia
Biomonitoring, De Lismortel
31, 5612 AREindhoven, The Netherlands
| | - Menno W. J. Prins
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MBEindhoven, The Netherlands,Department
of Applied Physics, Eindhoven University
of Technology, 5600 MBEindhoven, The Netherlands,Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MBEindhoven, The Netherlands,Helia
Biomonitoring, De Lismortel
31, 5612 AREindhoven, The Netherlands,
| |
Collapse
|
21
|
Buskermolen AD, Lin YT, van Smeden L, van Haaften RB, Yan J, Sergelen K, de Jong AM, Prins MWJ. Continuous biomarker monitoring with single molecule resolution by measuring free particle motion. Nat Commun 2022; 13:6052. [PMID: 36229441 PMCID: PMC9561105 DOI: 10.1038/s41467-022-33487-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
There is a need for sensing technologies that can continuously monitor concentration levels of critical biomolecules in applications such as patient care, fundamental biological research, biotechnology and food industry, as well as the environment. However, it is fundamentally difficult to develop measurement technologies that are not only sensitive and specific, but also allow monitoring over a broad concentration range and over long timespans. Here we describe a continuous biomolecular sensing methodology based on the free diffusion of biofunctionalized particles hovering over a sensor surface. The method records digital events due to single-molecule interactions and enables biomarker monitoring at picomolar to micromolar concentrations without consuming any reagents. We demonstrate the affinity-based sensing methodology for DNA-based sandwich and competition assays, and for an antibody-based cortisol assay. Additionally, the sensor can be dried, facilitating storage over weeks while maintaining its sensitivity. We foresee that this will enable the development of continuous monitoring sensors for applications in fundamental research, for studies on organs on a chip, for the monitoring of patients in critical care, and for the monitoring of industrial processes and bioreactors as well as ecological systems.
Collapse
Affiliation(s)
- Alissa D. Buskermolen
- grid.6852.90000 0004 0398 8763Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Yu-Ting Lin
- grid.6852.90000 0004 0398 8763Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Laura van Smeden
- grid.6852.90000 0004 0398 8763Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Rik B. van Haaften
- grid.6852.90000 0004 0398 8763Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Junhong Yan
- Helia Biomonitoring, Eindhoven, the Netherlands
| | - Khulan Sergelen
- grid.6852.90000 0004 0398 8763Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Arthur M. de Jong
- grid.6852.90000 0004 0398 8763Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Menno W. J. Prins
- grid.6852.90000 0004 0398 8763Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands ,Helia Biomonitoring, Eindhoven, the Netherlands
| |
Collapse
|
22
|
Nielsen LDF, Hansen-Bruhn M, Nijenhuis MAD, Gothelf KV. Protein-Induced Fluorescence Enhancement and Quenching in a Homogeneous DNA-Based Assay for Rapid Detection of Small-Molecule Drugs in Human Plasma. ACS Sens 2022; 7:856-865. [PMID: 35239321 DOI: 10.1021/acssensors.1c02642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Homogeneous assays for determining the concentration of small molecules in biological fluids are of importance for monitoring blood levels of critical drugs in patients. We have developed a strand displacement competition assay for the drugs dabigatran, methotrexate, and linezolid, which allows detection and determination of the concentration of the drugs in plasma; however, a surprising kinetic behavior of the assay was observed with an initial rapid change in apparent FRET values. We found that protein-induced fluorescent enhancement or quenching (PIFE/Q) caused the initial change in fluorescence within the first minute after addition of protein, which could be exploited to construct assays for concentration determination within minutes in the low nanomolar range in plasma. A kinetic model for the assay was established, and when taking the new finding into account, the in silico simulations were in good agreement with the experimentally observed results. Utilizing these findings, a simpler assay was constructed for detection of dabigatran, which allowed for detection within minutes without any time dependencies.
Collapse
Affiliation(s)
- Line D. F. Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Malthe Hansen-Bruhn
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Minke A. D. Nijenhuis
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kurt V. Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Dillen A, Lammertyn J. Paving the way towards continuous biosensing by implementing affinity-based nanoswitches on state-dependent readout platforms. Analyst 2022; 147:1006-1023. [DOI: 10.1039/d1an02308j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining affinity-based nanoswitches with state-dependent readout platforms allows for continuous biosensing and acquisition of real-time information about biochemical processes occurring in the environment of interest.
Collapse
Affiliation(s)
- Annelies Dillen
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|
24
|
Lubken RM, Bergkamp MH, de Jong AM, Prins MWJ. Sensing Methodology for the Rapid Monitoring of Biomolecules at Low Concentrations over Long Time Spans. ACS Sens 2021; 6:4471-4481. [PMID: 34854303 PMCID: PMC8715529 DOI: 10.1021/acssensors.1c01991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Studies on the dynamics
of biological systems and biotechnological
processes require measurement techniques that can reveal time dependencies
of concentrations of specific biomolecules, preferably with small
time delays, short time intervals between subsequent measurements,
and the possibility to record over long time spans. For low-concentration
biomolecules, these requirements are very challenging since low-concentration
assays are typically slow and require new reagents in every assay.
Here, we present a sensing methodology that enables rapid monitoring
of picomolar and sub-picomolar concentrations in a reversible affinity-based
assay, studied using simulations. We demonstrate that low-concentration
biomolecules can be monitored with small time delays, short time intervals,
and in principle over an endless time span.
Collapse
Affiliation(s)
- Rafiq M. Lubken
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Max H. Bergkamp
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Arthur M. de Jong
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Menno W. J. Prins
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Helia Biomonitoring, Eindhoven 5612 AZ, The Netherlands
| |
Collapse
|
25
|
Bergkamp MH, IJzendoorn LJV, Prins MW. Real-Time Detection of State Transitions in Stochastic Signals from Biological Systems. ACS OMEGA 2021; 6:17726-17733. [PMID: 34278158 PMCID: PMC8280633 DOI: 10.1021/acsomega.1c02498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/16/2021] [Indexed: 05/27/2023]
Abstract
Robust analysis of signals from stochastic biomolecular processes is critical for understanding the dynamics of biological systems. Measured signals typically show multiple states with heterogeneities and a wide range of state lifetimes. Here, we present an algorithm for robust detection of state transitions in experimental time traces where the properties of the underlying states are a priori unknown. The method implements a maximum-likelihood approach to fit models in neighboring windows of data points. Multiple windows are combined to achieve a high sensitivity for state transitions with a wide range of lifetimes. The proposed maximum-likelihood multiple-windows change point detection (MM-CPD) algorithm is computationally extremely efficient and enables real-time signal analysis. By analyzing both simulated and experimental data, we demonstrate that the algorithm provides accurate change point detection in time traces with multiple heterogeneous states that are a priori unknown. A high sensitivity for a wide range of state lifetimes is achieved.
Collapse
Affiliation(s)
- Max H. Bergkamp
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612, The Netherlands
| | - Leo J. van IJzendoorn
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612, The Netherlands
| | - Menno W.J. Prins
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612, The Netherlands
- Helia
BioMonitoring, Eindhoven 5612, The Netherlands
| |
Collapse
|
26
|
Lin YT, Vermaas R, Yan J, de Jong AM, Prins MW. Click-Coupling to Electrostatically Grafted Polymers Greatly Improves the Stability of a Continuous Monitoring Sensor with Single-Molecule Resolution. ACS Sens 2021; 6:1980-1986. [PMID: 33985333 PMCID: PMC8165697 DOI: 10.1021/acssensors.1c00564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Sensing technologies
for the real-time monitoring of biomolecules
will allow studies of dynamic changes in biological systems and the
development of control strategies based on measured responses. Here,
we describe a molecular architecture and coupling process that allow
continuous measurements of low-concentration biomolecules over long
durations in a sensing technology with single-molecule resolution.
The sensor is based on measuring temporal changes of the motion of
particles upon binding and unbinding of analyte molecules. The biofunctionalization
involves covalent coupling by click chemistry to PLL-g-PEG bottlebrush polymers. The polymer is grafted to a surface by
multivalent electrostatic interactions, while the poly(ethylene glycol)
suppresses nonspecific binding of biomolecules. With this biofunctionalization
strategy, we demonstrate the continuous monitoring of single-stranded
DNA and a medically relevant small-molecule analyte (creatinine),
in sandwich and competitive assays, in buffer and in filtered blood
plasma, with picomolar, nanomolar, and micromolar analyte concentrations,
and with continuous sensor operation over 10 h.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rosan Vermaas
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Junhong Yan
- Helia BioMonitoring, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Arthur M. de Jong
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Menno W.J. Prins
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Helia BioMonitoring, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
27
|
Visser EWA, Miladinovic J, Milstein JN. An Ultrastable and Dense Single-Molecule Click Platform for Sensing Protein-Deoxyribonucleic Acid Interactions. SMALL METHODS 2021; 5:e2001180. [PMID: 34928085 DOI: 10.1002/smtd.202001180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Indexed: 06/14/2023]
Abstract
An ultrastable, highly dense single-molecule assay ideal for observing protein-DNA interactions is demonstrated. Stable click tethered particle motion leverages next generation click-chemistry to achieve an ultrahigh density of surface tethered reporter particles, and has low non-specific interactions, is stable at elevated temperatures to at least 45 °C, and is compatible with Mg2+ , an important ionic component of many regulatory protein-DNA interactions. Prepared samples remain stable, with little degradation, for >6 months in physiological buffers. These improvements enable the authors to study previously inaccessible sequence and temperature-dependent effects on DNA binding by the bacterial protein, histone-like nucleoid-structuring protein, a global transcriptional regulator found in Escherichia coli. This greatly improved assay can directly be translated to accelerate existing tethered particle-based, single-molecule biosensing applications.
Collapse
Affiliation(s)
- Emiel W A Visser
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Jovana Miladinovic
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Joshua N Milstein
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
28
|
Alvisi N, Gutiérrez-Mejía FA, Lokker M, Lin YT, de Jong AM, van Delft F, de Vries R. Self-Assembly of Elastin-like Polypeptide Brushes on Silica Surfaces and Nanoparticles. Biomacromolecules 2021; 22:1966-1979. [PMID: 33871996 PMCID: PMC8154268 DOI: 10.1021/acs.biomac.1c00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control over the placement and activity of biomolecules on solid surfaces is a key challenge in bionanotechnology. While covalent approaches excel in performance, physical attachment approaches excel in ease of processing, which is equally important in many applications. We show how the precision of recombinant protein engineering can be harnessed to design and produce protein-based diblock polymers with a silica-binding and highly hydrophilic elastin-like domain that self-assembles on silica surfaces and nanoparticles to form stable polypeptide brushes that can be used as a scaffold for later biofunctionalization. From atomic force microscopy-based single-molecule force spectroscopy, we find that individual silica-binding peptides have high unbinding rates. Nevertheless, from quartz crystal microbalance measurements, we find that the self-assembled polypeptide brushes cannot easily be rinsed off. From atomic force microscopy imaging and bulk dynamic light scattering, we find that the binding to silica induces fibrillar self-assembly of the peptides. Hence, we conclude that the unexpected stability of these self-assembled polypeptide brushes is at least in part due to peptide-peptide interactions of the silica-binding blocks at the silica surface.
Collapse
Affiliation(s)
- Nicolò Alvisi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Fabiola A Gutiérrez-Mejía
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Meike Lokker
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Yu-Ting Lin
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Arthur M de Jong
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
29
|
Lubken R, de Jong AM, Prins MWJ. How Reactivity Variability of Biofunctionalized Particles Is Determined by Superpositional Heterogeneities. ACS NANO 2021; 15:1331-1341. [PMID: 33395272 PMCID: PMC7844819 DOI: 10.1021/acsnano.0c08578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The biofunctionalization of particles with specific targeting moieties forms the foundation for molecular recognition in biomedical applications such as targeted nanomedicine and particle-based biosensing. To achieve a high precision of targeting for nanomedicine and high precision of sensing for biosensing, it is important to understand the consequences of heterogeneities of particle properties. Here, we present a comprehensive methodology to study with experiments and simulations the collective consequences of particle heterogeneities on multiple length scales, called superpositional heterogeneities, in generating reactivity variability per particle. Single-molecule techniques are used to quantify stochastic, interparticle, and intraparticle variabilities, in order to show how these variabilities collectively contribute to reactivity variability per particle, and how the influence of each contributor changes as a function of the system parameters such as particle interaction area, the particle size, the targeting moiety density, and the number of particles. The results give insights into the consequences of superpositional heterogeneities for the reactivity variability in biomedical applications and give guidelines on how the precision can be optimized in the presence of multiple independent sources of variability.
Collapse
Affiliation(s)
- Rafiq
M. Lubken
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AP, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AP, The Netherlands
| | - Arthur M. de Jong
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612 AP, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AP, The Netherlands
| | - Menno W. J. Prins
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AP, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612 AP, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612 AP, The Netherlands
| |
Collapse
|
30
|
Armstrong RE, Horáček M, Zijlstra P. Plasmonic Assemblies for Real-Time Single-Molecule Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003934. [PMID: 33258287 DOI: 10.1002/smll.202003934] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/09/2020] [Indexed: 05/11/2023]
Abstract
Their tunable optical properties and versatile surface functionalization have sparked applications of plasmonic assemblies in the fields of biosensing, nonlinear optics, and photonics. Particularly, in the field of biosensing, rapid advances have occurred in the use of plasmonic assemblies for real-time single-molecule sensing. Compared to individual particles, the use of assemblies as sensors provides stronger signals, more control over the optical properties, and access to a broader range of timescales. In the past years, they have been used to directly reveal single-molecule interactions, mechanical properties, and conformational dynamics. This review summarizes the development of real-time single-molecule sensors built around plasmonic assemblies. First, a brief overview of their optical properties is given, and then recent applications are described. The current challenges in the field and suggestions to overcome those challenges are discussed in detail. Their stability, specificity, and sensitivity as sensors provide a complementary approach to other single-molecule techniques like force spectroscopy and single-molecule fluorescence. In future applications, the impact in real-time sensing on ultralong timescales (hours) and ultrashort timescales (sub-millisecond), time windows that are difficult to access using other techniques, is particularly foreseen.
Collapse
Affiliation(s)
- Rachel E Armstrong
- Department of Applied Physics & Institute for Complex Molecular Systems, Eindhoven University of Technology, Postbus 513, Eindhoven, MB, 5600, the Netherlands
| | - Matěj Horáček
- Department of Applied Physics & Institute for Complex Molecular Systems, Eindhoven University of Technology, Postbus 513, Eindhoven, MB, 5600, the Netherlands
| | - Peter Zijlstra
- Department of Applied Physics & Institute for Complex Molecular Systems, Eindhoven University of Technology, Postbus 513, Eindhoven, MB, 5600, the Netherlands
| |
Collapse
|