1
|
Xue Y, Wu F, Zhao X, Ji W, Hou L, Yu P, Mao L. Highly Sensitive Near-Field Electrochemical Sensor for In Vivo Monitoring of Respiratory Patterns. ACS Sens 2024; 9:2149-2155. [PMID: 38579117 DOI: 10.1021/acssensors.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Real-time tracking of respiratory patterns provides noninvasive and quick access for evaluating pathophysiological conditions yet remains challenging due to limited temporal resolution and poor sensitivity to dig out fingerprints of respiratory waveforms. Here, we report an electrochemical sensor for accurately tracing respiratory patterns of small animal models based on the electrochemical impedance mechanism for wireless coupling of a graphdiyne oxide (GYDO)-modified sensing coil chip and a reader coil chip via near-field magnetic induction. In the electrochemical impedance measurement mode, an alternating current is applied through the reader coil chip to perturb proton transport at the GYDO interface of the sensing coil chip. As demonstrated, a high-frequency perturbing condition significantly reduces the interfacial resistance for proton transport by 5 orders of magnitude under 95% relative humidity (RH) and improves the low-humidity responses with a limit of detection down to 0.2% RH, enabling in vivo accurate profiling of respiratory patterns on epileptic rats. The electrochemical impedance coupling system holds great potential for new wireless bioelectronics.
Collapse
Affiliation(s)
- Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fei Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xudong Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lijuan Hou
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Seidel S, Winkler KF, Kurreck A, Cruz-Bournazou MN, Paulick K, Groß S, Neubauer P. Thermal segment microwell plate control for automated liquid handling setups. LAB ON A CHIP 2024; 24:2224-2236. [PMID: 38456212 DOI: 10.1039/d3lc00714f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Automated high-throughput liquid handling operations in biolabs necessitate miniaturised and automatised equipment for effective space utilisation and system integration. This paper presents a thermal segment microwell plate control unit designed for enhanced microwell-based experimentation in liquid handling setups. The development of this device stems from the need to move towards geometry standardization and system integration of automated lab equipment. It incorporates features based on Smart Sensor and Sensor 4.0 concepts. An enzymatic activity assay is implemented with the developed device on a liquid handling station, allowing fast characterisation via a high-throughput approach. The device outperforms other comparable devices in certain metrics based on automated liquid handling requirements and addresses the needs of future biolabs in automation, especially in high-throughput screening.
Collapse
Affiliation(s)
- Simon Seidel
- Chair of Bioprocess Engineering, Department of Biotechnology, Faculty III, Technische Universität Berlin, Berlin, Germany.
| | - Katja F Winkler
- Chair of Bioprocess Engineering, Department of Biotechnology, Faculty III, Technische Universität Berlin, Berlin, Germany.
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Department of Biotechnology, Faculty III, Technische Universität Berlin, Berlin, Germany.
- BioNukleo GmbH, Berlin, Germany
| | - Mariano Nicolas Cruz-Bournazou
- Chair of Bioprocess Engineering, Department of Biotechnology, Faculty III, Technische Universität Berlin, Berlin, Germany.
| | | | | | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Faculty III, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Wang C, Jiao C, Wang M, Pan J, Wang Q. GO/CNT-OH/Nafion Nanocomposite Humidity Sensor Based on the LC Wireless Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1925. [PMID: 37446441 DOI: 10.3390/nano13131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
In recent years, LC resonant sensors have gained widespread attention for their extensive applications in industries such as pharmaceutical storage and food transportation. A wireless passive sensor with a good sensing performance is proposed based on a GO/CNT-OH/Nafion nanocomposite. The sensor was fabricated via inkjet printing technology, and the surface morphology of the GO/CNT-OH/Nafion nanocomposite was characterized by SEM measurement. It is found that the MWCNTs support the GO layer and the hydrophobic chains of Nafion interact with the hydrophobic layer of GO, resulting in a larger cavity and hydrophilic surface of the entire material. This structure well reflects the fact that the mixing of MWCNTs and Nafion provides the entire material with a stronger water absorption. The experimental study shows that the proposed humidity sensor has a frequency variation of 103 kHz/%RH at low humidity (30-60% RH) and a sensitivity of 931 kHz/%RH at high humidity (60-95% RH), while the sensitivity value from 30-95% RH is 547 kHz/% RH. The response time and recovery time are 110 s and 115 s, respectively. In addition, the tests showed that the GO/CNT-OH/Nafion nanocomposite applied to the humidity sensor had a maximum humidity hysteresis of about 3% RH at 30-95% RH, the resonant frequency remained basically unchanged after 50 h of testing, and the whole sensor possessed a good stability. After conducting several repeated experiments, it was found that the resonant frequency error of the whole sensor was low and did not affect the overall sensing test, which proved the reproducible preparation of the sensor. Finally, the humidity-sensing mechanism of the proposed sensor was analyzed in this paper, and it was found that GO enhanced the hygroscopic properties of GO/CNT-OH/Nafion nanocomposite when it was supported by MWCNT-OH and included uniformly dispersed Nafion. Therefore, our proposed humidity sensor is suitable for humidity detection above 30% RH in both sealed and open environments.
Collapse
Affiliation(s)
- Chengkai Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chunxiao Jiao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Meng Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jinghong Pan
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Qi Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
4
|
Ertsgaard CT, Kim M, Choi J, Oh SH. Wireless dielectrophoresis trapping and remote impedance sensing via resonant wireless power transfer. Nat Commun 2023; 14:103. [PMID: 36609514 PMCID: PMC9821345 DOI: 10.1038/s41467-022-35777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Nearly all biosensing platforms can be described using two fundamental steps-collection and detection. Target analytes must be delivered to a sensing element, which can then relay the transduced signal. For point-of-care technologies, where operation is to be kept simple, typically the collection step is passive diffusion driven-which can be slow or limiting under low concentrations. This work demonstrates an integration of both active collection and detection by using resonant wireless power transfer coupled to a nanogap capacitor. Nanoparticles suspended in deionized water are actively trapped using wireless dielectrophoresis and positioned within the most sensitive fringe field regions for wireless impedance-based detection. Trapping of 40 nm particles and larger is demonstrated using a 3.5 VRMS, 1 MHz radiofrequency signal delivered over a distance greater than 8 cm from the nanogap capacitor. Wireless trapping and release of 1 µm polystyrene beads is simultaneously detected in real-time over a distance of 2.5 cm from the nanogap capacitor. Herein, geometric scaling strategies coupled with optimal circuit design is presented to motivate combined collection and detection biosensing platforms amenable to wireless and/or smartphone operation.
Collapse
Affiliation(s)
- Christopher T Ertsgaard
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Minki Kim
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jungwon Choi
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Bounik R, Cardes F, Ulusan H, Modena MM, Hierlemann A. Impedance Imaging of Cells and Tissues: Design and Applications. BME FRONTIERS 2022; 2022:1-21. [PMID: 35761901 PMCID: PMC7612906 DOI: 10.34133/2022/9857485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their label-free and noninvasive nature, impedance measurements have attracted increasing interest in biological research. Advances in microfabrication and integrated-circuit technology have opened a route to using large-scale microelectrode arrays for real-time, high-spatiotemporal-resolution impedance measurements of biological samples. In this review, we discuss different methods and applications of measuring impedance for cell and tissue analysis with a focus on impedance imaging with microelectrode arrays in in vitro applications. We first introduce how electrode configurations and the frequency range of the impedance analysis determine the information that can be extracted. We then delve into relevant circuit topologies that can be used to implement impedance measurements and their characteristic features, such as resolution and data-acquisition time. Afterwards, we detail design considerations for the implementation of new impedance-imaging devices. We conclude by discussing future fields of application of impedance imaging in biomedical research, in particular applications where optical imaging is not possible, such as monitoring of ex vivo tissue slices or microelectrode-based brain implants.
Collapse
Affiliation(s)
- Raziyeh Bounik
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Fernando Cardes
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Hasan Ulusan
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Mario M. Modena
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| |
Collapse
|
6
|
Lee KH, Kim TH. Recent Advances in Multicellular Tumor Spheroid Generation for Drug Screening. BIOSENSORS 2021; 11:445. [PMID: 34821661 PMCID: PMC8615712 DOI: 10.3390/bios11110445] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 05/12/2023]
Abstract
Multicellular tumor spheroids (MCTs) have been employed in biomedical fields owing to their advantage in designing a three-dimensional (3D) solid tumor model. For controlling multicellular cancer spheroids, mimicking the tumor extracellular matrix (ECM) microenvironment is important to understand cell-cell and cell-matrix interactions. In drug cytotoxicity assessments, MCTs provide better mimicry of conventional solid tumors that can precisely represent anticancer drug candidates' effects. To generate incubate multicellular spheroids, researchers have developed several 3D multicellular spheroid culture technologies to establish a research background and a platform using tumor modelingvia advanced materials science, and biosensing techniques for drug-screening. In application, drug screening was performed in both invasive and non-invasive manners, according to their impact on the spheroids. Here, we review the trend of 3D spheroid culture technology and culture platforms, and their combination with various biosensing techniques for drug screening in the biomedical field.
Collapse
Affiliation(s)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Korea;
| |
Collapse
|
7
|
Liang Y, Ma M, Zhang F, Liu F, Lu T, Liu Z, Li Y. Wireless Microfluidic Sensor for Metal Ion Detection in Water. ACS OMEGA 2021; 6:9302-9309. [PMID: 33842799 PMCID: PMC8028120 DOI: 10.1021/acsomega.1c00941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/18/2021] [Indexed: 06/02/2023]
Abstract
In the present work, a wireless microfluidic sensor based on low-temperature cofired ceramic (LTCC) technology for real-time detection of metal ions in water is proposed. The wireless sensor is composed of a planar spiral inductor and parallel plate capacitor (LC) resonant antenna, which integrates with the microchannel in the LTCC substrate between the capacitor plates. Aqueous solutions of Pb(NO3)2, Cd(NO3)2, Mg(NO3)2, Ca(NO3)2, NaNO3, and KNO3 with concentrations of 0-100 mM were tested with the sensors. The metal ion and its concentration in water can be tested by the amplitude of the reflection coefficient (S 11) and the resonance frequency (f r) of the wireless microfluidic sensor. The metal ion species can be distinguished from the wireless response behavior of the sensor. The detection limit of the sensor for the selected metal ionic solutions could reach as low as 5 μM. The normalized sensitivity of the sensor is 0.47%, which is higher than that of the reported liquid microfluidic sensors based on microwave resonators. The wireless microfluidic sensor of this study is promising for rapid and convenient detection of heavy metal ion pollutants in the industrial wastewater.
Collapse
Affiliation(s)
- Yu Liang
- CAS
Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute
of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Ma
- CAS
Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute
of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Faqiang Zhang
- CAS
Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute
of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Feng Liu
- CAS
Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute
of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Tan Lu
- CAS
Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute
of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhifu Liu
- CAS
Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute
of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxiang Li
- School
of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
8
|
Eggert S, Gutbrod MS, Liebsch G, Meier R, Meinert C, Hutmacher DW. Automated 3D Microphysiometry Facilitates High-Content and Highly Reproducible Oxygen Measurements within 3D Cell Culture Models. ACS Sens 2021; 6:1248-1260. [PMID: 33621068 DOI: 10.1021/acssensors.0c02551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microphysiometry is a powerful technique to study metabolic parameters and detect changes to external stimuli. However, applying this technique for automated label-free and real-time measurements within cell-laden three-dimensional (3D) cell culture constructs remains a challenge. Herein, we present an entirely automated microphysiometry setup that combines needle-type microsensors with motorized sample and sensor positioning systems inside a standard tissue-culture incubator. The setup records dissolved oxygen as a metabolic parameter along the z-direction within cell-laden 3D constructs in a minimally invasive manner. The microphysiometry setup was applied to characterize the spatial oxygen distribution within thick cell-laden 3D constructs, study the time-dependent changes on the oxygen tension within 3D breast cancer models following a chemotherapeutic treatment, and identify kinetics and recovery effects after drug exposure over 5 weeks. Our data suggest that the microphysiometry setup enables highly reproducible measurements without human intervention, due to the high degree of automation and positional accuracy. The results demonstrate the applicability of the setup to provide valuable long-term insights into oxygenation within 3D models using minimally invasive, label-free, and entirely automated analysis methods.
Collapse
Affiliation(s)
- Sebastian Eggert
- Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- Chair of Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Garching 85748, Germany
| | - Martin S. Gutbrod
- PreSens Precision Sensing GmbH, Am Biopark 11, 93053 Regensburg, Germany
| | - Gregor Liebsch
- PreSens Precision Sensing GmbH, Am Biopark 11, 93053 Regensburg, Germany
| | - Robert Meier
- PreSens Precision Sensing GmbH, Am Biopark 11, 93053 Regensburg, Germany
| | - Christoph Meinert
- Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, 4000 QLD, Australia
| | - Dietmar W. Hutmacher
- Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, Brisbane, 4000 QLD, Australia
| |
Collapse
|