1
|
Anderson K, Edwards MA. A Tutorial for Scanning Electrochemical Cell Microscopy (SECCM) Measurements: Step-by-Step Instructions, Visual Resources, and Guidance for First Experiments. ACS MEASUREMENT SCIENCE AU 2025; 5:160-177. [PMID: 40255599 PMCID: PMC12006954 DOI: 10.1021/acsmeasuresciau.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/22/2025]
Abstract
Scanning electrochemical cell microscopy (SECCM) produces nanoscale-resolution electrochemical maps of electrode surfaces using the meniscus at the tip of an electrolyte-filled nanopipette as a mobile electrochemical cell. While the use and range of applications of SECCM have grown rapidly since its introduction, the pathway to performing SECCM measurements can be daunting to those without direct access to expert users. This work fills this expertise gap by providing a step-by-step guide to performing one's first SECCM experiments, including troubleshooting strategies, videos/images, suggested parameters and experimental systems, and representative data (of both successful experiments and common problems). No background in SECCM is assumed and fundamentals are clearly explained at each stage with a rationale for the experimental steps provided. This work provides an entry point for the uninitiated to understand and use this powerful nanoscale electrochemical characterization technique.
Collapse
Affiliation(s)
- Kamsy
Lerae Anderson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Martin Andrew Edwards
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Gaudin LF, Bentley CL. Revealing the diverse electrochemistry of nanoparticles with scanning electrochemical cell microscopy. Faraday Discuss 2025; 257:194-211. [PMID: 39445458 DOI: 10.1039/d4fd00115j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The next generation of electroactive materials will depend on advanced nanomaterials, such as nanoparticles (NPs), for improved function and reduced cost. As such, the development of structure-function relationships for these NPs has become a prime focus for researchers from many fields, including materials science, catalysis, energy storage, photovoltaics, environmental/biomedical sensing, etc. The technique of scanning electrochemical cell microscopy (SECCM) has naturally positioned itself as a premier experimental methodology for the investigation of electroactive NPs, due to its unique capability to encapsulate individual, spatially distinct entities, and to apply a potential to (and measure the resulting current of) single-NPs. Over the course of conducting these single-NP investigations, a number of unexpected (i.e. rarely-reported) results have been collected, including fluctuating current responses, and carrying of the NP by the SECCM probe, hypothesised to be due to insufficient NP-surface interaction. Additionally, locations with measurable electrochemical activity have been found to contain no associated NP, and conversely locations with no activity have been found to contain NPs. Through presenting and discussing these findings, this article seeks to highlight complications in single-NP SECCM experiments, particularly those arising from issues with sample preparation.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| |
Collapse
|
3
|
Osoro K, Rahman S, Hill CM. Electrochemical nucleation and growth kinetics: insights from single particle scanning electrochemical cell microscopy studies. Faraday Discuss 2025; 257:126-136. [PMID: 39541195 DOI: 10.1039/d4fd00131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The kinetics of particle nucleation and growth are critical to a wide variety of electrochemical systems. While studies carried out at the single particle level are promising for improving our understanding of nucleation and growth processes, conventional analytical frameworks commonly employed in bulk studies may not be appropriate for single particle experiments. Here, we present scanning electrochemical cell microscopy (SECCM) studies of Ag nucleation and growth on carbon and indium tin oxide (ITO) electrodes. Statistical analyses of the data from these experiments reveal significant discrepancies with traditional, quasi-equilibrium kinetic models commonly employed in the analysis of particle nucleation in electrochemical systems. Time-dependent kinetic models are presented capable of appropriately analysing the data generated via SECCM to extract meaningful chemical quantities such as surface energies and kinetic rate constants. These results demonstrate a powerful new approach to the analysis of single particle nucleation and growth data which could be leveraged in differentiating behavior within spatially heterogeneous systems.
Collapse
Affiliation(s)
- Kenneth Osoro
- Department of Chemistry, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA.
| | - Sinthia Rahman
- Department of Chemistry, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA.
| | - Caleb M Hill
- Department of Chemistry, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA.
| |
Collapse
|
4
|
Caniglia G, Horn S, Kranz C. Scanning electrochemical probe microscopy: towards the characterization of micro- and nanostructured photocatalytic materials. Faraday Discuss 2025; 257:224-239. [PMID: 39452692 DOI: 10.1039/d4fd00136b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Platinum-black (Pt-B) has been demonstrated to be an excellent electrocatalytic material for the electrochemical oxidation of hydrogen peroxide (H2O2). As Pt-B films can be deposited electrochemically, micro- and nano-sized conductive transducers can be modified with Pt-B. Here, we present the potential of Pt-B micro- and sub-micro-sized sensors for the detection and quantification of hydrogen (H2) in solution. Using these microsensors, no sampling step for H2 determination is required and e.g., in photocatalysis, the onset of H2 evolution can be monitored in situ. We present Pt-B-based H2 micro- and sub-micro-sized sensors based on different electrochemical transducers such as microelectrodes and atomic force microscopy (AFM)-scanning electrochemical microscopy (SECM) probes, which enable local measurements e.g., at heterogenized photocatalytically active samples. The microsensors are characterized in terms of limits of detection (LOD), which ranges from 4.0 μM to 30 μM depending on the size of the sensors and the experimental conditions such as type of electrolyte and pH. The sensors were tested for the in situ H2 evolution by light-driven water-splitting, i.e., using ascorbic acid or triethanolamine solutions, showing a wide linear concentration range, good reproducibility, and high sensitivity. Proof-of-principle experiments using Pt-B-modified cantilever-based sensors were performed using a model sample platinum substrate to map the electrochemical H2 evolution along with the topography using AFM-SECM.
Collapse
Affiliation(s)
- Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11 89081 Ulm, Germany.
| | - Sarah Horn
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11 89081 Ulm, Germany.
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11 89081 Ulm, Germany.
| |
Collapse
|
5
|
Mondaca-Medina IE, Ren H. Site-Specific Stochastic Rates and Energetics of Ag Nucleation on Highly Ordered Pyrolytic Graphite. ACS NANO 2024; 18:32617-32624. [PMID: 39541172 DOI: 10.1021/acsnano.4c09981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nucleation is a fundamentally important step in electrochemical phase transition reactions, e.g., in electrodeposition, which is pertinent for emerging battery technology, nanoparticle synthesis, and many industrial processes. Surface defects have been suggested to enhance nucleation rates. However, directly quantifying the nucleation rates at specific surface sites is challenging due to the ensemble averaging effect in bulk measurements. Herein, we report the measurement of rates and energetics of electronucleation across the model surface of highly oriented pyrolytic graphite (HOPG). Specifically, scanning electrochemical cell microscopy (SECCM) is used to confine the nucleation spatially in the nanoscale cell, allowing one nucleation event to be measured at one time. The scanning capability further allows the mapping of Ag nucleation at the step edge vs basal plane. A stochastic model is developed to extract the nucleation rate and energetics from voltammetric experiments. We observed a ∼57 mV difference in the median nucleation overpotential between the step edge and basal plane, corresponding to a ∼12 kJ mol-1 difference in the nucleation energy barrier. The voltammetric method to measure the nucleation rate explored here can be extended to understand the heterogeneity of nucleation rates in other electrochemical nucleation systems, e.g., metal anode batteries.
Collapse
Affiliation(s)
| | - Hang Ren
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
- Allen J. Bard Center for Electrochemistry, University of Texas, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Kempler PA, Coridan RH, Luo L. Gas Evolution in Water Electrolysis. Chem Rev 2024; 124:10964-11007. [PMID: 39259040 DOI: 10.1021/acs.chemrev.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Gas bubbles generated by the hydrogen evolution reaction and oxygen evolution reaction during water electrolysis influence the energy conversion efficiency of hydrogen production. Here, we survey what is known about the interaction of gas bubbles and electrode surfaces and the influence of gas evolution on practicable devices used for water electrolysis. We outline the physical processes occurring during the life cycle of a bubble, summarize techniques used to characterize gas evolution phenomena in situ and in practical device environments, and discuss ways that electrodes can be tailored to facilitate gas removal at high current densities. Lastly, we review efforts to model the behavior of individual gas bubbles and multiphase flows produced at gas-evolving electrodes. We conclude our review with a short summary of outstanding questions that could be answered by future efforts to characterize gas evolution in electrochemical device environments or by improved simulations of multiphase flows.
Collapse
Affiliation(s)
- Paul A Kempler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Zhang L, Iwata R, Lu Z, Wang X, Díaz-Marín CD, Zhong Y. Bridging Innovations of Phase Change Heat Transfer to Electrochemical Gas Evolution Reactions. Chem Rev 2024; 124:10052-10111. [PMID: 39194152 DOI: 10.1021/acs.chemrev.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid-vapor phase change. Recent developments of liquid-vapor phase change systems have substantially advanced the fundamental knowledge of bubbles, leading to unprecedented enhancement of heat transfer performance. In this Review, we aim to elucidate a promising opportunity of understanding bubble dynamics in electrochemical gas evolution reactions through a lens of phase change heat transfer. We first provide a background about key parallels between electrochemical gas evolution reactions and phase change heat transfer. Then, we discuss bubble dynamics in gas evolution systems across multiple length scales, with an emphasis on exciting research problems inspired by new insights gained from liquid-vapor phase change systems. Lastly, we review advances in engineered surfaces for manipulating bubbles to enhance heat and mass transfer, providing an outlook on the design of high-performance gas evolving electrodes.
Collapse
Affiliation(s)
- Lenan Zhang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ryuichi Iwata
- Toyota Central R&D Laboratories, Inc, Nagakute City 480-1192, Japan
| | - Zhengmao Lu
- Institute of Mechanical Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Xuanjie Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carlos D Díaz-Marín
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Gaudin LF, Wright IR, Harris-Lee TR, Jayamaha G, Kang M, Bentley CL. Five years of scanning electrochemical cell microscopy (SECCM): new insights and innovations. NANOSCALE 2024; 16:12345-12367. [PMID: 38874335 DOI: 10.1039/d4nr00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) is a nanopipette-based technique which enables measurement of localised electrochemistry. SECCM has found use in a wide range of electrochemical applications, and due to the wider uptake of this technique in recent years, new applications and techniques have been developed. This minireview has collected all SECCM research articles published in the last 5 years, to demonstrate and celebrate the recent advances, and to make it easier for SECCM researchers to remain well-informed. The wide range of SECCM applications is demonstrated, which are categorised here into electrocatalysis, electroanalysis, photoelectrochemistry, biological materials, energy storage materials, corrosion, electrosynthesis, and instrumental development. In the collection of this library of SECCM studies, a few key trends emerge. (1) The range of materials and processes explored with SECCM has grown, with new applications emerging constantly. (2) The instrumental capabilities of SECCM have grown, with creative techniques being developed from research groups worldwide. (3) The SECCM research community has grown significantly, with adoption of the SECCM technique becoming more prominent.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - India R Wright
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - Thom R Harris-Lee
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
- Department of Chemistry, University of Bath, Claverton Down, Bath, UK
| | - Gunani Jayamaha
- School of Chemistry, University of Sydney, Camperdown, 2050 NSW, Australia
| | - Minkyung Kang
- School of Chemistry, University of Sydney, Camperdown, 2050 NSW, Australia
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| |
Collapse
|
9
|
Monteiro J, McKelvey K. Scanning Bubble Electrochemical Microscopy: Mapping of Electrocatalytic Activity with Low-Solubility Reactants. Anal Chem 2024; 96:9767-9772. [PMID: 38835148 DOI: 10.1021/acs.analchem.4c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Determining electrocatalytic activity for reactions that involve reactants with limited solubility presents a significant challenge due to the reduced mass-transport to the electrocatalyst surface. This limitation is seen in important reactions such as the oxygen reduction reaction, nitrogen reduction reaction, and carbon dioxide reduction reaction. We introduce a new approach, which we call scanning bubble electrochemical microscopy, to enable the detection and high-resolution mapping of electrocatalytic activity with low-solubility reactants at high mass-transport rates. Using a scanning probe approach, a dual-barreled nanopipette is used to precisely deliver the gas-phase reactant within micrometers of an electrocatalyst surface, which results in high mass-transport rates at the electrocatalyst surface directly under the probe. We demonstrate the scanning bubble electrochemical microscopy approach by mapping the oxygen reduction reaction on model platinum microelectrode surfaces. We anticipate that scanning bubble electrochemical microscopy will provide an effective tool for measuring the electrocatalytic activity of reactants that have limited solubility.
Collapse
Affiliation(s)
- Jaimy Monteiro
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Kim McKelvey
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
10
|
Aruchamy G, Kim BK. Recent Trends and Perspectives in Single-Entity Electrochemistry: A Review with Focus on a Water Splitting Reaction. Crit Rev Anal Chem 2024:1-17. [PMID: 38829955 DOI: 10.1080/10408347.2024.2358492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Electrochemical measurements involving single nanoparticles have attracted considerable research attention. In recent years, various studies have been conducted on single-entity electrochemistry (SEE) for the in-depth analyses of catalytic reactions. Although, several electrocatalysts have been developed for H2 energy production, designing innovative electrocatalysts for this purpose remains a challenging task. Stochastic collision electrochemistry is gaining increased attention because it has led to new findings in the SEE field. Importantly, it facilitates establishing structure activity relationships for electrocatalysts by monitoring transient signals. This article reviews the recent achievements related to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using different electrocatalysts at the nanoscale level. In particular, it discusses the electrocatalytic activities of noble metal nanoparticles, including Ag, Au, Pt, and Pd nanoparticles, at the single-particle level. Because heterogeneity is a key factor affecting the catalytic activity of nanostructures, our work focuses on the influence of heterogeneities in catalytic materials on the OER and HER activities. These results may help to achieve a better understanding of the fundamental processes involved in the water splitting reaction.
Collapse
Affiliation(s)
- Gowrisankar Aruchamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Byung-Kwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Grandy L, Yassine SR, Lacasse R, Mauzeroll J. Selective Initiation of Corrosion Pits in Stainless Steel Using Scanning Electrochemical Cell Microscopy. Anal Chem 2024; 96:7394-7400. [PMID: 38696447 PMCID: PMC11100481 DOI: 10.1021/acs.analchem.3c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 05/04/2024]
Abstract
Scanning electrochemical cell microscopy is a useful technique for determining variations in corrosion behavior across a surface. However, the numerous options for experimental parameters and little understanding of their effect on the corroding system render comparisons of results between studies difficult. Herein, we explore changes in corrosion behavior of two martensitic stainless steels, a cast CA6NM and a wrought S41500, as a result of the chosen experimental parameters, including scan rate, approach potential, surface oil immersion, and tip aperture diameter. The study demonstrates that these experimental parameters can be controlled to probe oxide passivation kinetics and single pitting events by changing the surface state and cathodic currents. We measured the pitting and repassivation kinetics of a single pit and determined the compositional change of the Al2O3 inclusion site initiation point. Hundreds of data points were measured within 17 h of experimental time on the stainless steel samples, allowing statistical averages of corrosion and pitting values. This work will open new avenues for fine-tuning various corrosion aspects at the microscale, thereby contributing to a deeper understanding of the corrosion processes and mechanisms of diverse materials.
Collapse
Affiliation(s)
- Lindsay Grandy
- Department
of Chemistry, McGill University, 845 Sherbrooke St W, Montréal, Québec H3A 0G4,Canada
| | - Sarah R. Yassine
- Department
of Chemistry, McGill University, 845 Sherbrooke St W, Montréal, Québec H3A 0G4,Canada
| | - Robert Lacasse
- Hydro-Québec
Research Institute (IREQ), 1800 Bd Lionel-Boulet, Varennes, Québec J3X 1S1,Canada
| | - Janine Mauzeroll
- Department
of Chemistry, McGill University, 845 Sherbrooke St W, Montréal, Québec H3A 0G4,Canada
| |
Collapse
|
12
|
Xu B, Meng X, Huang J, Shan Y, Qiu D, Chen Q. Revealing the Heterogeneous Bubble Nucleation at Individual Silica Nanoparticles. Anal Chem 2024. [PMID: 38319065 DOI: 10.1021/acs.analchem.3c04411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Deep understanding of the bubble nucleation process is universally important in systems, from chemical engineering to materials. However, due to its nanoscale and transient nature, effective probing of nucleation behavior with a high spatiotemporal resolution is prohibitively challenging. We previously reported the measurement of a single nanobubble nucleation at a nanoparticle using scanning electrochemical cell microscopy, where the bubble nucleation and formation were inferred from the voltammetric responses. Here, we continue the study of heterogeneous bubble nucleation at interfaces by regulating the local nanostructures using silica nanoparticles with a distinct surface morphology. It is demonstrated that, compared to the smooth spherical silica nanoparticles, the raspberry-like nanoparticles can further significantly reduce the nucleation energy barrier, with a critical peak current about 23% of the bare carbon surfaces. This study advances our understanding of how surface nanostructures direct the heterogeneous nucleation process and may offer a new strategy for surface engineering in gas involved energy conversion systems.
Collapse
Affiliation(s)
- Binbin Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaohui Meng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juan Huang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yun Shan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
13
|
Cheng X, Du ZD, Ding Y, Li FY, Hua ZS, Liu H. Bubble Management for Electrolytic Water Splitting by Surface Engineering: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16994-17008. [PMID: 38050682 DOI: 10.1021/acs.langmuir.3c02477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
During electrocatalytic water splitting, the management of bubbles possesses great importance to reduce the overpotential and improve the stability of the electrode. Bubble evolution is accomplished by nucleation, growth, and detachment. The expanding nucleation sites, decreasing bubble size, and timely detachment of bubbles from the electrode surface are key factors in bubble management. Recently, the surface engineering of electrodes has emerged as a promising strategy for bubble management in practical water splitting due to its reliability and efficiency. In this review, we start with a discussion of the bubble behavior on the electrodes during water splitting. Then we summarize recent progress in the management of bubbles from the perspective of surface physical (electrocatalytic surface morphology) and surface chemical (surface composition) considerations, focusing on the surface texture design, three-dimensional construction, wettability coating technology, and functional group modification. Finally, we present the principles of bubble management, followed by an insightful perspective and critical challenges for further development.
Collapse
Affiliation(s)
- Xu Cheng
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Zhong-de Du
- School of Materials Science and Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Yu Ding
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Fu-Yu Li
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Zhong-Sheng Hua
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Huan Liu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| |
Collapse
|
14
|
Suvira M, Ahuja A, Lovre P, Singh M, Draher GW, Zhang B. Imaging Single H 2 Nanobubbles Using Off-Axis Dark-Field Microscopy. Anal Chem 2023; 95:15893-15899. [PMID: 37851536 DOI: 10.1021/acs.analchem.3c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A robust and detailed physicochemical description of electrochemically generated surface nanobubbles and their effects on electrochemical systems remains at large. Herein, we report the development and utilization of an off-axis, dark-field microscopy imaging tool for probing the dynamic process of generating single H2 nanobubbles at the surface of a carbon nanoelectrode. A change in the direction of the incident light is made to significantly reduce the intensity of the background light, which enables us to image both the nanoelectrode and nanobubble on the electrode surface or the metal nanoparticles in the vicinity of the electrode. The correlated electrochemical and optical response provides novel insights regarding bubble nucleation and dissolution on a nanoelectrode previously unattainable solely from its current-voltage response.
Collapse
Affiliation(s)
- Milomir Suvira
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Ananya Ahuja
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Pascal Lovre
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Mantak Singh
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Gracious Wyatt Draher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
15
|
Gadea ED, Molinero V, Scherlis DA. Nanobubble Stability and Formation on Solid-Liquid Interfaces in Open Environments. NANO LETTERS 2023; 23:7206-7212. [PMID: 37490518 DOI: 10.1021/acs.nanolett.3c02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Are surface nanobubbles transient or thermodynamically stable structures? This question remained controversial until recently, when the stability of gas nanobubbles at solid-liquid interfaces was demonstrated from thermodynamic arguments in closed systems, establishing that bubbles with radii of hundreds of nanometers can be stable at modest supersaturations if the gas amount is finite. Here we develop a grand-canonical description of bubble formation that predicts that nanobubbles can nucleate and remain thermodynamically stable in open boundaries at high supersaturations when pinned to hydrophobic supports as small as a few nanometers. While larger bubbles can also be stable at lower supersaturations, the corresponding barriers are orders of magnitude above kT, meaning that their formation cannot proceed via heterogeneous nucleation on a uniform solid interface but must follow some alternative path. Moreover, we conclude that a source of growth-limiting mechanism, such as pinning or gas availability, is necessary for the thermodynamic stabilization of surface bubbles.
Collapse
Affiliation(s)
- Esteban D Gadea
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0580, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0580, United States
| | - Damián A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
16
|
Mondaca-Medina E, García-Carrillo R, Lee H, Wang Y, Zhang H, Ren H. Nanoelectrochemistry in electrochemical phase transition reactions. Chem Sci 2023; 14:7611-7619. [PMID: 37476712 PMCID: PMC10355110 DOI: 10.1039/d3sc01857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Electrochemical phase transition is important in a range of processes, including gas generation in fuel cells and electrolyzers, as well as in electrodeposition in battery and metal production. Nucleation is the first step in these phase transition reactions. A deep understanding of the kinetics, and mechanism of the nucleation and the structure of the nuclei and nucleation sites is fundamentally important. In this perspective, theories and methods for studying electrochemical nucleation are briefly reviewed, with an emphasis on nanoelectrochemistry and single-entity electrochemistry approaches. Perspectives on open questions and potential future approaches are also discussed.
Collapse
Affiliation(s)
- Elías Mondaca-Medina
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Roberto García-Carrillo
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Yufei Wang
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - He Zhang
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| |
Collapse
|
17
|
Gao C, Li Y, Zhao J, Sun W, Guang S, Chen Q. Measuring the Pseudocapacitive Behavior of Individual V 2O 5 Particles by Scanning Electrochemical Cell Microscopy. Anal Chem 2023. [PMID: 37392190 DOI: 10.1021/acs.analchem.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
V2O5 is a promising pseudocapacitive material for electrochemical energy storage with balanced power and energy density. Understanding the charge-storage mechanism is of significance to further improve the rate performance. Here, we report an electrochemical study of individual V2O5 particles using scanning electrochemical cell microscopy with colocalized electron microscopy. A carbon sputtering procedure is proposed for the pristine V2O5 particles to improve their structure stability and electronic conductivity. The achieved high-quality electrochemical cyclic voltammetry results, structural integrity, and high oxidation to reduction charge ratio (as high as 97.74%) assured further quantitative analysis of the pseudocapacitive behavior of single particles and correlation with local particle structures. A broad range of capacitive contribution is revealed, with an average ratio of 76% at 1.0 V/s. This study provides new opportunities for quantitative analysis of the electrochemical charge-storage process at single particles, especially for electrode materials with electrolyte-induced instability.
Collapse
Affiliation(s)
- Cong Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yingjian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Wei Sun
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shanyi Guang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
18
|
Jin R, Zhou W, Xu Y, Jiang D, Fang D. Electrochemical Visualization of Membrane Proteins in Single Cells at a Nanoscale Using Scanning Electrochemical Cell Microscopy. Anal Chem 2023. [PMID: 37358933 DOI: 10.1021/acs.analchem.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The electrochemical visualization of proteins in the plasma membrane of single fixed cells was achieved with a spatial resolution of 160 nm using scanning electrochemical cell microscopy. The model protein, the carcinoembryonic antigen (CEA), is linked with a ruthenium complex (Ru(bpy)32+)-tagged antibody, which exhibits redox peaks in its cyclic voltammetry curves after a nanopipette tip contacts the cellular membrane. Based on the potential-resolved oxidation or reduction currents, an uneven distribution of membrane CEAs on the cells is electrochemically visualized, which could only be achieved previously using super-resolution optical microscopy. Compared with current electrochemical microscopy, the single-cell scanning electrochemical cell microscopy (SECCM) strategy not only improves the spatial resolution but also utilizes the potential-resolved current from the antibody-antigen complex to increase electrochemical imaging accuracy. Eventually, the electrochemical visualization of cellular proteins at the nanoscale enables the super-resolution study of cells to provide more biological information.
Collapse
Affiliation(s)
- Rong Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenting Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| |
Collapse
|
19
|
Anderson KL, Edwards MA. Evaluating Analytical Expressions for Scanning Electrochemical Cell Microscopy (SECCM). Anal Chem 2023; 95:8258-8266. [PMID: 37191580 DOI: 10.1021/acs.analchem.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Scanning electrochemical cell microscopy (SECCM) maps the electrochemical activity of a surface with nanoscale resolution using an electrolyte-filled nanopipette. The meniscus at the end of the pipet is sequentially placed at an array of locations across the surface, forming a series of nanometric electrochemical cells where the current-voltage response is measured. Quantitative interpretation of these responses typically employs numerical modeling to solve the coupled equations of transport and electron transfer, which require costly software or self-written code. Expertise and time are required to build and solve numerical models, which must be rerun for each new experiment. In contrast, algebraic expressions directly relate the current response to physical parameters. They are simpler to use, faster to calculate, and can provide greater insight but frequently require simplifying assumptions. In this work, we provide algebraic expressions for current and concentration distributions in SECCM experiments, which are formulated by approximating the pipet and meniscus using 1-D spherical coordinates. Expressions for the current and concentration distributions as a function of experimental parameters and in various conditions (steady state and time dependent, diffusion limited, and including migration) all show excellent agreement with numerical simulations employing a full geometry. Uses of the analytical expressions include determination of expected currents in experiments and quantifying electron-transfer rate constants in SECCM experiments.
Collapse
Affiliation(s)
- Kamsy Lerae Anderson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Martin Andrew Edwards
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
20
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
21
|
Tian L, Liang J, Gao Y, Gao X, Kang X. Current oscillations from bipolar nanopores for statistical monitoring of hydrogen evolution on a confined electrochemical catalyst. Phys Chem Chem Phys 2023; 25:7629-7633. [PMID: 36857696 DOI: 10.1039/d3cp00055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Taking advantage of bipolar electrochemistry and a glass nanopipette, continuous single bubbles can be controlled which are generated and detached from a nanometer-sized area of confined electrochemical catalysts. The observed current oscillations offer opportunities to rapidly collect data for the statistical analysis of single-bubble generation on and departure from the catalysts.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Jing Liang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Yingjie Gao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Xiang Gao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Xiaofeng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| |
Collapse
|
22
|
Isolation of pseudocapacitive surface processes at monolayer MXene flakes reveals delocalized charging mechanism. Nat Commun 2023; 14:374. [PMID: 36690615 PMCID: PMC9870982 DOI: 10.1038/s41467-023-35950-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Pseudocapacitive charge storage in Ti3C2Tx MXenes in acid electrolytes is typically described as involving proton intercalation/deintercalation accompanied by redox switching of the Ti centres and protonation/deprotonation of oxygen functional groups. Here we conduct nanoscale electrochemical measurements in a unique experimental configuration, restricting the electrochemical contact area to a small subregion (0.3 µm2) of a monolayer Ti3C2Tx flake. In this unique configuration, proton intercalation into interlayer spaces is not possible, and surface processes are isolated from the bulk processes, characteristic of macroscale electrodes. Analysis of the pseudocapacitive response of differently sized MXene flakes indicates that entire MXene flakes are charged through electrochemical contact of only a small basal plane subregion, corresponding to as little as 3% of the flake surface area. Our observation of pseudocapacitive charging outside the electrochemical contact area is suggestive of a fast transport of protons mechanism across the MXene surface.
Collapse
|
23
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
24
|
Influence of the electrolyte conductivity on the critical current density and the breakdown voltage. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Abstract
Understanding the structure-activity relationship at electrochemical interfaces is crucial in improving the performance of practical electrochemical devices, ranging from fuel cells, electrolyzers, and batteries to electrochemical sensors. However, functional electrochemical interfaces are often complex and contain various surface structures, creating heterogeneity in electrochemical activity. In this Perspective, we highlight the role of heterogeneity in electrochemistry, especially in the context of electrocatalysis. Current methods for revealing the heterogeneity at electrochemical interfaces, including nanoelectrochemistry tools and single-entity approaches, are discussed. Lastly, we provide perspectives on what one can learn by studying heterogeneity and how one can use heterogeneity to design more efficient electrochemical devices.
Collapse
Affiliation(s)
- C Hyun Ryu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heekwon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Direct measuring of single-heterogeneous bubble nucleation mediated by surface topology. Proc Natl Acad Sci U S A 2022; 119:e2205827119. [PMID: 35858338 PMCID: PMC9303989 DOI: 10.1073/pnas.2205827119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heterogeneous bubble nucleation is one of the most fundamental interfacial processes ranging from nature to technology. There is excellent evidence that surface topology is important in directing heterogeneous nucleation; however, deep understanding of the energetics by which nanoscale architectures promote nucleation is still challenging. Herein, we report a direct and quantitative measurement of single-bubble nucleation on a single silica nanoparticle within a microsized droplet using scanning electrochemical cell microscopy. Local gas concentration at nucleation is determined from finite element simulation at the corresponding faradaic current of the peak-featured voltammogram. It is demonstrated that the criteria gas concentration for nucleation first drops and then rises with increasing nanoparticle radius. An optimum nanoparticle radius around 10 nm prominently expedites the nucleation by facilitating the special topological nanoconfinements that consequently catalyze the nucleation. Moreover, the experimental result is corroborated by our theoretical calculations of free energy change based on the classic nucleation theory. This study offers insights into the impact of surface topology on heterogenous nucleation that have not been previously observed.
Collapse
|
27
|
Chen Q, Zhao J, Deng X, Shan Y, Peng Y. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. J Phys Chem Lett 2022; 13:6153-6163. [PMID: 35762985 DOI: 10.1021/acs.jpclett.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gas bubbles are found in diverse electrochemical processes, ranging from electrolytic water splitting to chlor-alkali electrolysis, as well as photoelectrochemical processes. Understanding the intricate influence of bubble evolution on the electrode processes and mass transport is key to the rational design of efficient devices for electrolytic energy conversion and thus requires precise measurement and analysis of individual gas bubbles. In this Perspective, we review the latest advances in single-entity measurement of gas bubbles on electrodes, covering the approaches of voltammetric and galvanostatic studies based on nanoelectrodes, probing bubble evolution using scanning probe electrochemistry with spatial information, and monitoring the transient nature of nanobubble formation and dynamics with opto-electrochemical imaging. We emphasize the intrinsic and quantitative physicochemical interpretation of single gas bubbles from electrochemical data, highlighting the fundamental understanding of the heterogeneous nucleation, dynamic state of the three-phase boundary, and the correlation between electrolytic bubble dynamics and nanocatalyst activities. In addition, a brief discussion of future perspectives is presented.
Collapse
Affiliation(s)
- Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoli Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yun Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
28
|
Bentley CL, Kang M, Bukola S, Creager SE, Unwin PR. High-Resolution Ion-Flux Imaging of Proton Transport through Graphene|Nafion Membranes. ACS NANO 2022; 16:5233-5245. [PMID: 35286810 PMCID: PMC9047657 DOI: 10.1021/acsnano.1c05872] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/29/2021] [Indexed: 05/18/2023]
Abstract
In 2014, it was reported that protons can traverse between aqueous phases separated by nominally pristine monolayer graphene and hexagonal boron nitride (h-BN) films (membranes) under ambient conditions. This intrinsic proton conductivity of the one-atom-thick crystals, with proposed through-plane conduction, challenged the notion that graphene is impermeable to atoms, ions, and molecules. More recent evidence points to a defect-facilitated transport mechanism, analogous to transport through conventional ion-selective membranes based on graphene and h-BN. Herein, local ion-flux imaging is performed on chemical vapor deposition (CVD) graphene|Nafion membranes using an "electrochemical ion (proton) pump cell" mode of scanning electrochemical cell microscopy (SECCM). Targeting regions that are free from visible macroscopic defects (e.g., cracks, holes, etc.) and assessing hundreds to thousands of different sites across the graphene surfaces in a typical experiment, we find that most of the CVD graphene|Nafion membrane is impermeable to proton transport, with transmission typically occurring at ≈20-60 localized sites across a ≈0.003 mm2 area of the membrane (>5000 measurements total). When localized proton transport occurs, it can be a highly dynamic process, with additional transmission sites "opening" and a small number of sites "closing" under an applied electric field on the seconds time scale. Applying a simple equivalent circuit model of ion transport through a cylindrical nanopore, the local transmission sites are estimated to possess dimensions (radii) on the (sub)nanometer scale, implying that rare atomic defects are responsible for proton conductance. Overall, this work reinforces SECCM as a premier tool for the structure-property mapping of microscopically complex (electro)materials, with the local ion-flux mapping configuration introduced herein being widely applicable for functional membrane characterization and beyond, for example in diagnosing the failure mechanisms of protective surface coatings.
Collapse
Affiliation(s)
- Cameron L. Bentley
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Saheed Bukola
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephen E. Creager
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
29
|
Liu G, Hao L, Li H, Zhang K, Yu X, Li D, Zhu X, Hao D, Ma Y, Ma L. Topography Mapping with Scanning Electrochemical Cell Microscopy. Anal Chem 2022; 94:5248-5254. [PMID: 35312291 DOI: 10.1021/acs.analchem.1c04692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-resolution scanning electrochemical cell microscopy (SECCM), synchronously visualizing the topography and electrochemical activity, could be used to directly correlate the structure and activity of materials nanoscopically. However, its topographical measurement is largely restricted by the size and stability of the meniscus droplet formed at the end of the nanopipette. In this paper, we report a scheme that could reliably gain several tens nanometer resolution (≥65 nm) of SECCM using homemade ∼50 nm inner diameter probes. Furthermore, the topography and hydrogen evolution reaction (HER) activity of ∼45 nm self-assembled Au nanoparticles monolayer were simultaneously recorded successfully. This scheme could make mapping of both topologic and chemical properties of samples in the nanometer regime with SECCM routinely, which potentially can largely expand the field of SECCM applications.
Collapse
Affiliation(s)
- Gen Liu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Luzhen Hao
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Hao Li
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Kaimin Zhang
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Xue Yu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Dong Li
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaodong Zhu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Danni Hao
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Yanqing Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China.,State Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, P. R. China
| | - Lei Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
30
|
Shan Y, Deng X, Lu X, Gao C, Li Y, Chen Q. Surface facets dependent oxygen evolution reaction of single Cu2O nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
The effect of buoyancy driven convection on the growth and dissolution of bubbles on electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Valavanis D, Ciocci P, Meloni GN, Morris P, Lemineur JF, McPherson IJ, Kanoufi F, Unwin PR. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss 2021; 233:122-148. [PMID: 34909815 DOI: 10.1039/d1fd00063b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-μm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Peter Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
33
|
Lu X, Li M, Peng Y, Xi X, Li M, Chen Q, Dong A. Direct Probing of the Oxygen Evolution Reaction at Single NiFe 2O 4 Nanocrystal Superparticles with Tunable Structures. J Am Chem Soc 2021; 143:16925-16929. [PMID: 34612638 DOI: 10.1021/jacs.1c08592] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Due to the precisely controllable size, shape, and composition, self-assembled nanocrystal superlattices exhibit unique collective properties and find wide applications in catalysis and energy conversion. Identifying their intrinsic electrocatalytic activity is challenging, as their averaged properties on ensembles can hardly be dissected from binders or additives. We here report the direct measurement of the oxygen evolution reaction at single superparticles self-assembled from ∼8 nm NiFe2O4 and/or ∼4 nm Au nanocrystals using scanning electrochemical cell microscopy. Combined with coordinated scanning electron microscopy, it is found that the turnover frequency (TOF) estimated from single NiFe2O4 superparticles at 1.92 V vs RHE ranges from 0.2 to 11 s-1 and is sensitive to size only when it is smaller than ∼800 nm in diameter. After the incorporation of Au nanocrystals, the TOF increases by ∼6-fold and levels off with further increasing Au content. Our study demonstrates the first direct single entity electrochemical study on individual nanocrystal superlattices with tunable structures and unravels the intrinsic structure-activity relationship that is not accessible by other methods.
Collapse
Affiliation(s)
- Xiaoxi Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mingzhong Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiangyun Xi
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Man Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
34
|
Liu Y, Lu X, Peng Y, Chen Q. Electrochemical Visualization of Gas Bubbles on Superaerophobic Electrodes Using Scanning Electrochemical Cell Microscopy. Anal Chem 2021; 93:12337-12345. [PMID: 34460230 DOI: 10.1021/acs.analchem.1c02099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic gas evolution reactions, where gaseous molecules are electrogenerated by reduction or oxidation of a species, play a central role in many energy conversion systems. Superaerophobic electrodes, usually constructed by their surface microstructures, have demonstrated excellent performance for electrochemical gas evolution reactions due to their bubble-repellent properties. Understanding and quantification of the gas bubble behavior including nucleation and dynamics on such microstructured electrodes is an important but underexplored issue. In this study, we reported a scanning electrochemical cell microscopy (SECCM) investigation of individual gas bubble nucleation and dynamics on nanoscale electrodes. A classic Pt film and a nonconventional transition-metal dichalcogenide MoS2 film with different surface topologies were employed as model substrates for both H2 and N2 bubble electrochemical studies. Interestingly, the nanostructured catalyst surface exhibit significantly less supersaturation for gas bubble nucleation and a notable increase of bubble detachment compared to its flat counterpart. Electrochemical mapping results reveal that there is no clear correlation between bubble nucleation and hydrogen evolution reaction (HER) activity, regardless of local electrode surface microstructures. Our results also indicate that while the hydrophobicity of the nanostructured MoS2 surface promotes bubble nucleation, it has little effect on bubble dynamics. This work introduces a new method for nanobubble electrochemistry on broadly interesting catalysts and suggests that the deliberate microstructure on a catalyst surface is a promising strategy for improving electrocatalytic gas evolution both in terms of bubble nucleation and elimination.
Collapse
Affiliation(s)
- Yulong Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoxi Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
35
|
Saha P, Rahman MM, Hill CM. Borohydride oxidation electrocatalysis at individual, shape‐controlled Au nanoparticles. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Partha Saha
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| | | | - Caleb M. Hill
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| |
Collapse
|
36
|
Liu G, Wong WSY, Kraft M, Ager JW, Vollmer D, Xu R. Wetting-regulated gas-involving (photo)electrocatalysis: biomimetics in energy conversion. Chem Soc Rev 2021; 50:10674-10699. [PMID: 34369513 DOI: 10.1039/d1cs00258a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
(Photo)electrolysis of water or gases with water to species serving as industrial feedstocks and energy carriers, such as hydrogen, ammonia, ethylene, propanol, etc., has drawn tremendous attention. Moreover, these processes can often be driven by renewable energy under ambient conditions as a sustainable alternative to traditional high-temperature and high-pressure synthesis methods. In addition to the extensive studies on catalyst development, increasing attention has been paid to the regulation of gas transport/diffusion behaviors during gas-involving (photo)electrocatalytic reactions towards the goal of creating industrially viable catalytic systems with high reaction rates, excellent long-term stabilities and near-unity selectivities. Biomimetic surfaces and systems with special wetting capabilities and structural advantages can shed light on the future design of (photo)electrodes and address long-standing challenges. This article is dedicated to bridging the fields of wetting and catalysis by reviewing the cutting-edge design methodologies of both gas-evolving and gas-consuming (photo)electrocatalytic systems. We first introduce the fundamentals of various in-air/underwater wetting states and their corresponding bioinspired structural properties. The relationship amongst the bubble transport behavior, wettability, and porosity/tortuosity is also discussed. Next, the latest implementations of wetting-related design principles for gas-evolving reactions (i.e. the hydrogen evolution reaction and oxygen evolution reaction) and gas-consuming reactions (i.e. the oxygen reduction reaction and CO2 reduction reaction) are summarized. For photoelectrode designs, additional factors are taken into account, such as light absorption and the separation, transport and recombination of photoinduced electrons and holes. The influences of wettability and 3D structuring of (photo)electrodes on the catalytic activity, stability and selectivity are analyzed to reveal the underlying mechanisms. Finally, remaining questions and related future perspectives are outlined.
Collapse
Affiliation(s)
- Guanyu Liu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore. and Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, 138602 Singapore
| | - William S Y Wong
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Markus Kraft
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, 138602 Singapore and Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Joel W Ager
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA and Berkeley Educational Alliance for Research in Singapore (BEARS), CREATE Tower, 1 Create Way, 138602 Singapore
| | - Doris Vollmer
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Rong Xu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore. and Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, 138602 Singapore
| |
Collapse
|
37
|
Ciocci P, Lemineur JF, Noël JM, Combellas C, Kanoufi F. Differentiating electrochemically active regions of indium tin oxide electrodes for hydrogen evolution and reductive decomposition reactions. An in situ optical microscopy approach. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Li J, Liang X, Cai L, Zhao C. Surfactant-Free Synthesis of Three-Dimensional Metallic Nanonetworks via Nanobubble-Assisted Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8323-8330. [PMID: 34210124 DOI: 10.1021/acs.langmuir.1c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional metallic nanonetworks (3D-MNWs) demonstrate unique performances across a wide range of fields, and their facile and green synthetic method is of high significance. Herein, we report a self-generated-nanobubble scaffolding strategy for the fabrication of 3D-MNWs, which employs aqua ammonia (AA) as a nanobubble reservoir and avoids the use of any surfactants or polymeric capping agents. Benefiting from the interaction between ammonia and metallic nanoparticles, finely interlocked nanonetworks (Au, Pt, Ag, and Cu) with curved geometry and abundant pores are obtained by precisely controlling the anisotropic kinetic growth using a strong reducing agent and a high concentration of AA. As a demonstration, the methanol oxidation reaction (MOR) is tested to assess the electrocatalytic performance of the Pt 3D-MNWs. The peak current of Pt 3D-MNWs reaches 152 mA/mgPt, which is 2.5 times higher than that of commercial Pt black. This unique nanobubble-assisted strategy has great potential in the basic synthetic prototype for polyporous nanomaterials.
Collapse
Affiliation(s)
- Jun Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Xiaosi Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Liying Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenyang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
39
|
JIN C, LIU YL, SHAN Y, CHEN QJ. Scanning Electrochemical Cell Microscope Study of Individual H2 Gas Bubble Nucleation on Platinum: Effect of Surfactants. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60096-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Lemineur JF, Ciocci P, Noël JM, Ge H, Combellas C, Kanoufi F. Imaging and Quantifying the Formation of Single Nanobubbles at Single Platinum Nanoparticles during the Hydrogen Evolution Reaction. ACS NANO 2021; 15:2643-2653. [PMID: 33523639 DOI: 10.1021/acsnano.0c07674] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While numerous efforts have been made toward the design of sustainable and efficient nanocatalysts of the hydrogen evolution reaction, there is a need for the operando observation and quantification of the formation of gas nanobubbles (NBs) involved in this electrochemical reaction. It is achieved herein through interference reflection microscopy coupled to electrochemistry and optical modeling. In addition to analyzing the geometry and growth rate of individual NBs at single nanocatalysts, the toolbox offered by superlocalization and quantitative label-free optical microscopy allows analyzing the geometry (contact angle and footprint with surface) of individual NBs and their growth rate. It turns out that, after a few seconds, NBs are steadily growing while they are fully covering the Pt nanoparticles that allowed their nucleation and their pinning on the electrode surface. It then raises relevant questions related to gas evolution catalysts, such as, for example, does the evaluation of NB growth at the single nanocatalyst really reflect its electrochemical activity?
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Hongxin Ge
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | | | | |
Collapse
|
41
|
Hill JW, Hill CM. Directly visualizing carrier transport and recombination at individual defects within 2D semiconductors. Chem Sci 2021; 12:5102-5112. [PMID: 34163749 PMCID: PMC8179556 DOI: 10.1039/d0sc07033e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Two-dimensional semiconductors (2DSCs) are promising materials for a wide range of optoelectronic applications. While the fabrication of 2DSCs with thicknesses down to the monolayer limit has been demonstrated through a variety of routes, a robust understanding of carrier transport within these materials is needed to guide the rational design of improved practical devices. In particular, the influence of different types of structural defects on transport is critical, but difficult to interrogate experimentally. Here, a new approach to visualizing carrier transport within 2DSCs, Carrier Generation-Tip Collection Scanning Electrochemical Cell Microscopy (CG-TC SECCM), is described which is capable of providing information at the single-defect level. In this approach, carriers are locally generated within a material using a focused light source and detected as they drive photoelectrochemical reactions at a spatially-offset electrolyte interface created through contact with a pipet-based probe, allowing carrier transport across well-defined, µm-scale paths within a material to be directly interrogated. The efficacy of this approach is demonstrated through studies of minority carrier transport within mechanically-exfoliated n-type WSe2 nanosheets. CG-TC SECCM imaging experiments carried out within pristine basal planes revealed highly anisotropic hole transport, with in-plane and out-of-plane hole diffusion lengths of 2.8 µm and 5.8 nm, respectively. Experiments were also carried out to probe recombination across individual step edge defects within n-WSe2 which suggest a significant surface charge (∼5 mC m-2) exists at these defects, significantly influencing carrier transport. Together, these studies demonstrate a powerful new approach to visualizing carrier transport and recombination within 2DSCs, down to the single-defect level.
Collapse
Affiliation(s)
- Joshua W Hill
- Department of Chemistry, University of Wyoming, 1000 E University Ave Laramie WY 82071 USA
| | - Caleb M Hill
- Department of Chemistry, University of Wyoming, 1000 E University Ave Laramie WY 82071 USA
| |
Collapse
|
42
|
Saini A, Messenger H, Kisley L. Fluorophores "Turned-On" by Corrosion Reactions Can Be Detected at the Single-Molecule Level. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2000-2006. [PMID: 33356107 DOI: 10.1021/acsami.0c18994] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate that fluorogenic molecules that "turn-on" upon redox reactions can sense the corrosion of iron at the single-molecule scale. We first observe the cathodic reduction of nonfluorescent resazurin to fluorescent resorufin in the presence of iron in bulk solution. The progression of corrosion is seen as a color change that is quantified as an increase in fluorescence emission intensity. We show that the fluorescence signal is directly related to the amount of electrons that are available due to corrosion progression and can be used to quantify the catalyzed increase in the rate of corrosion by NaCl. By using modern fluorescence microscopy instrumentation we detect real-time, single-molecule "turn-on" of resazurin by corrosion, overcoming the previous limitations of microscopic fluorescence corrosion detection. Analysis of the total number of individual resorufin molecules shows heterogeneities during the progression of corrosion that are not observed in ensemble measurements. Finally, we discuss the potential for single-molecule kinetic and super-resolution localization analysis of corrosion based on our findings. Single-molecule florescence microscopy opens up a new spatiotemporal regime to study corrosion at the molecular level.
Collapse
Affiliation(s)
- Anuj Saini
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Hannah Messenger
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
43
|
Bentley CL, Agoston R, Tao B, Walker M, Xu X, O'Mullane AP, Unwin PR. Correlating the Local Electrocatalytic Activity of Amorphous Molybdenum Sulfide Thin Films with Microscopic Composition, Structure, and Porosity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44307-44316. [PMID: 32880446 DOI: 10.1021/acsami.0c11759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thin-film electrodes, produced by coating a conductive support with a thin layer (nanometer to micrometer) of active material, retain the unique properties of nanomaterials (e.g., activity, surface area, conductivity, etc.) while being economically scalable, making them highly desirable as electrocatalysts. Despite the ever-increasing methods of thin-film deposition (e.g., wet chemical synthesis, electrodeposition, chemical vapor deposition, etc.), there is insufficient understanding on the nanoscale electrochemical activity of these materials in relation to structure/composition, particularly for those that lack long-range order (i.e., amorphous thin-film materials). In this work, scanning electrochemical cell microscopy (SECCM) is deployed in tandem with complementary, colocated compositional/structural analysis to understand the microscopic factors governing the electrochemical activity of amorphous molybdenum sulfide (a-MoSx) thin films, a promising class of hydrogen evolution reaction (HER) catalyst. The a-MoSx thin films, produced under ambient conditions by electrodeposition, possess spatially heterogeneous electrocatalytic activity on the tens-of-micrometer scale, which is not attributable to microscopic variations in elemental composition or chemical structure (i.e., Mo and/or S bonding environments), shown through colocated, local energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analysis. A new SECCM protocol is implemented to directly correlate electrochemical activity to the electrochemical surface area (ECSA) in a single measurement, revealing that the spatially heterogeneous HER response of a-MoSx is predominantly attributable to variations in the nanoscale porosity of the thin film, with surface roughness ruled out as a major contributing factor by complementary atomic force microscopy (AFM). As microscopic composition, structure, and porosity (ECSA) are all critical factors dictating the functional properties of nanostructured materials in electrocatalysis and beyond (e.g., battery materials, electrochemical sensors, etc.), this work further cements SECCM as a premier tool for structure-function studies in (electro)materials science.
Collapse
Affiliation(s)
- Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Roland Agoston
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Binglin Tao
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Xiangdong Xu
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|