1
|
Chang YF, Wang YC, Huang TY, Li MC, Chen SY, Lin YX, Su LC, Lin KJ. AI integration into wavelength-based SPR biosensing: Advancements in spectroscopic analysis and detection. Anal Chim Acta 2025; 1341:343640. [PMID: 39880496 DOI: 10.1016/j.aca.2025.343640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/30/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND In recent years, employing deep learning methods in the biosensing area has significantly reduced data analysis time and enhanced data interpretation and prediction accuracy. In some SPR fields, research teams have further enhanced detection capabilities using deep learning techniques. However, the application of deep learning to spectroscopic surface plasmon resonance (SPR) biosensors has not been reported. This study addresses the integration of AI methods to improve the signal-to-noise ratio (SNR) and detection accuracy of wavelength-based portable SPR biosensors. RESULTS We designed a deep neural network integrated with the spectral subtraction method to extract SPR responses from the proposed portable SPR biosensor. Using difference spectra as the model input, our AI model provided superior noise reduction and enhanced detection capabilities, outperforming traditional spectral feature extraction methods like dip or centroid positioning. Our study achieved a significantly amplified SNR and improved detection resolution to an impressive 10-7 RIU level. In addition, we employ Shapley Additive Explanations (SHAP) analysis to determine which parts of the input the AI model considers most important when extracting SPR response, thereby increasing the interpretability and transparency of the AI model. The results indicate that the wavelength regions considered most important by our proposed AI model are very close to the full width at half maximum (FWHM) range. This region is also recognized by traditional theory as having a significant impact on the sensitivity of SPR sensing. SIGNIFICANCE Integrating AI into wavelength-based portable SPR biosensing represents a significant advancement in on-site detection technologies, driving potential applications across various monitoring scenarios. Our findings highlight the AI model's effectiveness in reducing noise and enhancing detection accuracy, particularly in measurements involving low-concentration analytes. This innovation holds great promise for fields that demand real-time, high-precision, on-site detection, such as biomedical diagnostics, environmental monitoring, and biochemical analysis, setting the stage for transformative shifts in these critical areas.
Collapse
Affiliation(s)
- Ying-Feng Chang
- Artificial Intelligence Research Center, Chang Gung University, Taoyuan, 333323, Taiwan; Department of Gastroenterology and Hepatology, New Taipei Municipal Tu Cheng Hospital (Built and Operated By Chang Gung Medical Foundation), New Taipei City, 236017, Taiwan
| | - Yu-Chung Wang
- Artificial Intelligence Research Center, Chang Gung University, Taoyuan, 333323, Taiwan; Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan, 333323, Taiwan
| | - Tsung-Yu Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Meng-Chi Li
- General Education Center, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Sin-You Chen
- Artificial Intelligence Research Center, Chang Gung University, Taoyuan, 333323, Taiwan
| | - Yu-Xen Lin
- TeraOptics Corporation, Taoyuan, 320317, Taiwan
| | - Li-Chen Su
- General Education Center, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| | - Kwei-Jay Lin
- Artificial Intelligence Research Center, Chang Gung University, Taoyuan, 333323, Taiwan; Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan, 333323, Taiwan.
| |
Collapse
|
2
|
McCann B, Tipper B, Shahbeigi S, Soleimani M, Jabbari M, Nasr Esfahani M. A Review on Perception of Binding Kinetics in Affinity Biosensors: Challenges and Opportunities. ACS OMEGA 2025; 10:4197-4216. [PMID: 39959045 PMCID: PMC11822510 DOI: 10.1021/acsomega.4c10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/18/2025]
Abstract
There are challenges associated with design and development of affinity biosensors due to the complicated multiphysics nature of the system. Understanding the binding interaction between target molecules and immobilized receptors and its kinetics is a crucial step to develop robust and reliable biosensor technologies. Evaluation of binding kinetics in biosensors becomes more important and challenging for clinical samples with a complex matrix. Despite drastic advancements in biosensor technologies, having a practical perception of the binding kinetics has remained a critical bottleneck due to limited fundamental understanding. This Review aims to provide a comprehensive discussion on concepts and advances developed so far for the perception of binding kinetics in affinity biosensors. Here, modeling approaches and measurement techniques are presented to characterize the binding interactions in biosensor technologies, while the effect of fouling and secondary factors in the binding interactions will be discussed in the concept of kinetics. This Review will investigate the existing research gaps and potential opportunities in the perception of binding kinetics and challenges to develop robust and reliable biosensors.
Collapse
Affiliation(s)
- Benjamin McCann
- School
of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
| | - Brandon Tipper
- School
of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
| | | | | | - Masoud Jabbari
- School
of Mechanical Engineering, University of
Leeds, Leeds LS2 9JT, U.K.
| | | |
Collapse
|
3
|
Sahoo PK, Coates E, Silver CD, Li K, Krauss TF. On the reproducibility of electron-beam lithographic fabrication of photonic nanostructures. Sci Rep 2024; 14:8703. [PMID: 38622168 PMCID: PMC11018749 DOI: 10.1038/s41598-024-58842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Photonic nanostructures such as gratings and ring resonators have become ubiquitous building blocks in Photonics. For example, they are used in filters, they resonantly enhance signals and act as grating couplers. Much research effort is invested in using such structures to create novel functionalities, which often employs electron-beam lithography. An intrinsic issue in this field is the ability to accurately achieve a specific operating wavelength, especially for resonant systems, because nanometer-scale variations in feature size may easily detune the device. Here, we examine some of the key fabrication steps and show how to improve the reproducibility of fabricating wavelength scale photonic nanostructures. We use guided mode resonance grating sensors as our exemplar and find that the exposure condition and the development process significantly affect the consistency of the resonance wavelength, amplitude, and sensitivity of the sensor. By having careful control over these factors, we can achieve consistent performance for all the sensors studied, with less than 10% variation in their resonance behaviors. These investigations provide useful guidelines for fabricating nanostructures more reliably and to achieve a higher success rate in exploratory experiments.
Collapse
Affiliation(s)
- Pankaj K Sahoo
- Photonics Research Group, School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK.
- Department of Physics, Dhenkanal Autonomous College, Dhenkanal, Odisha, 759001, India.
| | - Eve Coates
- Photonics Research Group, School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Callum D Silver
- Photonics Research Group, School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Kezheng Li
- Photonics Research Group, School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Thomas F Krauss
- Photonics Research Group, School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| |
Collapse
|
4
|
Zheng P, Semancik S, Barman I. Quantum Plexcitonic Sensing. NANO LETTERS 2023; 23:9529-9537. [PMID: 37819891 DOI: 10.1021/acs.nanolett.3c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
While fundamental to quantum sensing, quantum state control has been traditionally limited to extreme conditions. This restricts the impact of the practical implementation of quantum sensing on a broad range of physical measurements. Plexcitons, however, provide a promising path under ambient conditions toward quantum state control and thus quantum sensing, owing to their origin from strong plasmon-exciton coupling. Herein, we harness plexcitons to demonstrate quantum plexcitonic sensing by strongly coupling excitonic particles to a plasmonic hyperbolic metasurface. As compared to classical sensing in the weak-coupling regime, our model of quantum plexcitonic sensing performs at a level that is ∼40 times more sensitive. Noise-modulated sensitivity studies reinforce the quantum advantage over classical sensing, featuring better sensitivity, smaller sensitivity uncertainty, and higher resilience against optical noise. The successful demonstration of quantum plexcitonic sensing opens the door for a variety of physical, chemical, and biological measurements by leveraging strongly coupled plasmon-exciton systems.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Steve Semancik
- Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
5
|
Kraft FA, Lehmann S, Di Maria C, Joksch L, Fitschen-Östern S, Fuchs S, Dell'Olio F, Gerken M. Intensity-Based Camera Setup for Refractometric and Biomolecular Sensing with a Photonic Crystal Microfluidic Chip. BIOSENSORS 2023; 13:687. [PMID: 37504086 PMCID: PMC10377058 DOI: 10.3390/bios13070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
Label-free sensing is a promising approach for point-of-care testing devices. Among optical transducers, photonic crystal slabs (PCSs) have positioned themselves as an inexpensive yet versatile platform for label-free biosensing. A spectral resonance shift is observed upon biomolecular binding to the functionalized surface. Commonly, a PCS is read out by a spectrometer. Alternatively, the spectral shift may be translated into an intensity change by tailoring the system response. Intensity-based camera setups (IBCS) are of interest as they mitigate the need for postprocessing, enable spatial sampling, and have moderate hardware requirements. However, they exhibit modest performance compared with spectrometric approaches. Here, we show an increase of the sensitivity and limit of detection (LOD) of an IBCS by employing a sharp-edged cut-off filter to optimize the system response. We report an increase of the LOD from (7.1 ± 1.3) × 10-4 RIU to (3.2 ± 0.7) × 10-5 RIU. We discuss the influence of the region of interest (ROI) size on the achievable LOD. We fabricated a biochip by combining a microfluidic and a PCS and demonstrated autonomous transport. We analyzed the performance via refractive index steps and the biosensing ability via diluted glutathione S-transferase (GST) antibodies (1:250). In addition, we illustrate the speed of detection and demonstrate the advantage of the additional spatial information by detecting streptavidin (2.9 µg/mL). Finally, we present the detection of immunoglobulin G (IgG) from whole blood as a possible basis for point-of-care devices.
Collapse
Affiliation(s)
- Fabio Aldo Kraft
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24118 Kiel, Germany
| | - Stefanie Lehmann
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| | - Carmela Di Maria
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126 Bari, Italy
| | - Leonie Joksch
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| | - Stefanie Fitschen-Östern
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Kiel University, 24105 Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Kiel University, 24105 Kiel, Germany
| | - Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126 Bari, Italy
| | - Martina Gerken
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
6
|
Kraft FA, Baur H, Bommer M, Latz A, Fitschen-Oestern S, Fuchs S, Gerken M. Label-free multiplex sensing from buffer and immunoglobulin G sensing from whole blood with photonic crystal slabs using angle-tuning of an optical interference filter. BIOMEDICAL OPTICS EXPRESS 2023; 14:2293-2310. [PMID: 37206136 PMCID: PMC10191658 DOI: 10.1364/boe.489138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023]
Abstract
Direct detection of biomarkers from unpurified whole blood has been a challenge for label-free detection platforms, such as photonic crystal slabs (PCS). A wide range of measurement concepts for PCS exist, but exhibit technical limitations, which render them unsuitable for label-free biosensing with unfiltered whole blood. In this work, we single out the requirements for a label-free point-of-care setup based on PCS and present a wavelength selecting concept by angle tuning of an optical interference filter, which fulfills these requirements. We investigate the limit of detection (LOD) for bulk refractive index changes and obtain a value of 3.4 E-4 refractive index units (RIU). We demonstrate label-free multiplex detection for different types of immobilization entities, including aptamers, antigens, and simple proteins. For this multiplex setup we detect thrombin at a concentration of 6.3 µg/ml, antibodies of glutathione S-transferase (GST) diluted by a factor of 250, and streptavidin at a concentration of 33 µg/ml. In a first proof of principle experiment, we demonstrate the ability to detect immunoglobulins G (IgG) from unfiltered whole blood. These experiments are conducted directly in the hospital without temperature control of the photonic crystal transducer surface or the blood sample. We set the detected concentration levels into a medical frame of reference and point out possible applications.
Collapse
Affiliation(s)
- Fabio A. Kraft
- Integrated Systems and Photonics, Faculty of Engineering,
Kiel University, Germany
- Kiel Nano, Surface and Interface Science KiNSIS,
Kiel University, Germany
| | | | | | - Andreas Latz
- Integrated Systems and Photonics, Faculty of Engineering,
Kiel University, Germany
- Novatec Immundiagnostica GmbH, Dietzenbach, Germany
| | | | - Sabine Fuchs
- Kiel Nano, Surface and Interface Science KiNSIS,
Kiel University, Germany
- University Hospital Schleswig-Holstein, Kiel University, Germany
| | - Martina Gerken
- Integrated Systems and Photonics, Faculty of Engineering,
Kiel University, Germany
- Kiel Nano, Surface and Interface Science KiNSIS,
Kiel University, Germany
| |
Collapse
|
7
|
Chen J, Liu J, Wu D, Pan R, Chen J, Wu Y, Huang M, Li G. CRISPR/Cas Precisely Regulated DNA-Templated Silver Nanocluster Fluorescence Sensor for Meat Adulteration Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14296-14303. [PMID: 36288511 DOI: 10.1021/acs.jafc.2c04500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Meat adulteration can cause consumer fraud, food allergies, and religious issues. Rapid and sensitive detection methods are urgently demanded to supervise meat authenticity. Herein, a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas precisely regulated DNA-templated silver nanocluster (DNA-AgNC) sensor was ingeniously designed to detect meat adulteration. Specific sequence recognition of CRISPR/Cas12a allowed accurate identification of target DNA. The emerging label-free fluorescent probes, DNA-AgNCs, a class of promising fluorophores in biochemical analysis with attractive photostability and remarkably enhanced fluorescence properties, were first introduced as the substrates of CRISPR/Cas12a system, allowing a sensitive output of amplified signals through the precise regulation of the unique target DNA-activated trans-cleavage activity of Cas12a. Based on this specific recognition, efficient signal transduction of CRISPR/Cas12a, and the outstanding fluorescence properties of DNA-AgNCs, the proposed strategy achieved a satisfactory linear range from 10 pM to 1 μM with a limit of detection (LOD) as low as 1.9 pM, which can achieve sensitive detection of meat adulteration.
Collapse
Affiliation(s)
- Jiahui Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, U.K
| | - Ruiyuan Pan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jian Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
8
|
Kharratian S, Conteduca D, Procacci B, Shaw DJ, Hunt NT, Krauss TF. Metasurface-enhanced mid-infrared spectroscopy in the liquid phase. Chem Sci 2022; 13:12858-12864. [PMID: 36519033 PMCID: PMC9645393 DOI: 10.1039/d2sc03927c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/20/2022] [Indexed: 02/12/2024] Open
Abstract
Vibrational spectroscopy is an important tool in chemical and biological analysis. A key issue when applying vibrational spectroscopy to dilute liquid samples is the inherently low sensitivity caused by short interaction lengths and small extinction coefficients, combined with low target molecule concentrations. Here, we introduce a novel type of surface-enhanced infrared absorption spectroscopy based on the resonance of a dielectric metasurface. We demonstrate that the method is suitable for probing vibrational bands of dilute analytes with a range of spectral linewidths. We observe that the absorption signal is enhanced by 1-2 orders of magnitude and show that this enhancement leads to a lower limit of detection compared to attenuated total reflection (ATR). Overall, the technique provides an important addition to the spectroscopist's toolkit especially for probing dilute samples.
Collapse
Affiliation(s)
- Soheila Kharratian
- Department of Chemistry and York Biomedical Institute, University of York Heslington York YO10 5DD UK
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York Heslington York YO10 5DD UK
| | - Donato Conteduca
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York Heslington York YO10 5DD UK
| | - Barbara Procacci
- Department of Chemistry and York Biomedical Institute, University of York Heslington York YO10 5DD UK
| | - Daniel J Shaw
- Department of Chemistry and York Biomedical Institute, University of York Heslington York YO10 5DD UK
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Institute, University of York Heslington York YO10 5DD UK
| | - Thomas F Krauss
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York Heslington York YO10 5DD UK
| |
Collapse
|
9
|
Nugroho FAA, Świtlik D, Armanious A, O’Reilly P, Darmadi I, Nilsson S, Zhdanov VP, Höök F, Antosiewicz TJ, Langhammer C. Time-Resolved Thickness and Shape-Change Quantification using a Dual-Band Nanoplasmonic Ruler with Sub-Nanometer Resolution. ACS NANO 2022; 16:15814-15826. [PMID: 36083800 PMCID: PMC9620406 DOI: 10.1021/acsnano.2c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Time-resolved measurements of changes in the size and shape of nanobiological objects and layers are crucial to understand their properties and optimize their performance. Optical sensing is particularly attractive with high throughput and sensitivity, and label-free operation. However, most state-of-the-art solutions require intricate modeling or multiparameter measurements to disentangle conformational or thickness changes of biomolecular layers from complex interfacial refractive index variations. Here, we present a dual-band nanoplasmonic ruler comprising mixed arrays of plasmonic nanoparticles with spectrally separated resonance peaks. As electrodynamic simulations and model experiments show, the ruler enables real-time simultaneous measurements of thickness and refractive index variations in uniform and heterogeneous layers with sub-nanometer resolution. Additionally, nanostructure shape changes can be tracked, as demonstrated by quantifying the degree of lipid vesicle deformation at the critical coverage prior to rupture and supported lipid bilayer formation. In a broader context, the presented nanofabrication approach constitutes a generic route for multimodal nanoplasmonic optical sensing.
Collapse
Affiliation(s)
- Ferry Anggoro Ardy Nugroho
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan
1081, 1081 HV Amsterdam, The Netherlands
- Department
of Physics, Universitas Indonesia, Depok 16424, Indonesia
| | - Dominika Świtlik
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Antonius Armanious
- Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Padraic O’Reilly
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Iwan Darmadi
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Sara Nilsson
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Vladimir P. Zhdanov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Boreskov
Institute of Catalysis, Russian Academy
of Sciences, Novosibirsk 630090, Russia
| | - Fredrik Höök
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tomasz J. Antosiewicz
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
10
|
Nugroho FAA, Bai P, Darmadi I, Castellanos GW, Fritzsche J, Langhammer C, Gómez Rivas J, Baldi A. Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection. Nat Commun 2022; 13:5737. [PMID: 36180437 PMCID: PMC9525276 DOI: 10.1038/s41467-022-33466-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Plasmonic sensors rely on optical resonances in metal nanoparticles and are typically limited by their broad spectral features. This constraint is particularly taxing for optical hydrogen sensors, in which hydrogen is absorbed inside optically-lossy Pd nanostructures and for which state-of-the-art detection limits are only at the low parts-per-million (ppm) range. Here, we overcome this limitation by inversely designing a plasmonic metasurface based on a periodic array of Pd nanoparticles. Guided by a particle swarm optimization algorithm, we numerically identify and experimentally demonstrate a sensor with an optimal balance between a narrow spectral linewidth and a large field enhancement inside the nanoparticles, enabling a measured hydrogen detection limit of 250 parts-per-billion (ppb). Our work significantly improves current plasmonic hydrogen sensor capabilities and, in a broader context, highlights the power of inverse design of plasmonic metasurfaces for ultrasensitive optical (gas) detection. Plasmonic hydrogen sensors have limited sensitivity due to broad spectral features. Here, the authors use a particle swarm optimization algorithm to inversely design a plasmonic metasurface based on a periodic array of Pd nanoparticles, and demonstrate hydrogen detection limit of 250 ppb.
Collapse
Affiliation(s)
- Ferry Anggoro Ardy Nugroho
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands. .,Department of Physics, Universitas Indonesia, 16424, Depok, Indonesia.
| | - Ping Bai
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Iwan Darmadi
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Gabriel W Castellanos
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| | - Jaime Gómez Rivas
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Andrea Baldi
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Conteduca D, Arruda GS, Barth I, Wang Y, Krauss TF, Martins ER. Beyond Q: The Importance of the Resonance Amplitude for Photonic Sensors. ACS PHOTONICS 2022; 9:1757-1763. [PMID: 35607641 PMCID: PMC9121374 DOI: 10.1021/acsphotonics.2c00188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 05/31/2023]
Abstract
Resonant photonic sensors are enjoying much attention based on the worldwide drive toward personalized healthcare diagnostics and the need to better monitor the environment. Recent developments exploiting novel concepts such as metasurfaces, bound states in the continuum, and topological sensing have added to the interest in this topic. The drive toward increasingly higher quality (Q)-factors, combined with the requirement for low costs, makes it critical to understand the impact of realistic limitations such as losses on photonic sensors. Traditionally, it is assumed that the reduction in the Q-factor sufficiently accounts for the presence of loss. Here, we highlight that this assumption is overly simplistic, and we show that losses have a stronger impact on the resonance amplitude than on the Q-factor. We note that the effect of the resonance amplitude has been largely ignored in the literature, and there is no physical model clearly describing the relationship between the limit of detection (LOD), Q-factor, and resonance amplitude. We have, therefore, developed a novel, ab initio analytical model, where we derive the complete figure of merit for resonant photonic sensors and determine their LOD. In addition to highlighting the importance of the optical losses and the resonance amplitude, we show that, counter-intuitively, optimization of the LOD is not achieved by maximization of the Q-factor but by counterbalancing the Q-factor and amplitude. We validate the model experimentally, put it into context, and show that it is essential for applying novel sensing concepts in realistic scenarios.
Collapse
Affiliation(s)
- Donato Conteduca
- Photonics
Group, School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, U.K.
| | - Guilherme S. Arruda
- São
Carlos School of Engineering, Department of Electrical and Computer
Engineering, University of São Paulo, São Carlos-SP 13566-590, Brazil
| | - Isabel Barth
- Photonics
Group, School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, U.K.
| | - Yue Wang
- Photonics
Group, School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, U.K.
| | - Thomas F. Krauss
- Photonics
Group, School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, U.K.
| | - Emiliano R. Martins
- São
Carlos School of Engineering, Department of Electrical and Computer
Engineering, University of São Paulo, São Carlos-SP 13566-590, Brazil
| |
Collapse
|
12
|
Wu J, Liang L, Zhang M, Zhu R, Wang Z, Yin Y, Yin B, Weng T, Fang S, Xie W, Wang L, Wang D. Single-Molecule Identification of the Conformations of Human C-Reactive Protein and Its Aptamer Complex with Solid-State Nanopores. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12077-12088. [PMID: 35234028 DOI: 10.1021/acsami.2c00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human C-reactive protein (CRP) is an established inflammatory biomarker and was proved to be potentially relevant to disease pathology and cancer progression. A large body of methodologies have been reported for CRP analysis, including electrochemical/optical biosensors, aptamer, or antibody-based detection. Although the detection limit is rather low until pg/uL, most of which are time-consuming and relatively expensive, and few of them provided CRP single-molecule information. This work demonstrated the nanopore-based approach for the characterization of CRP conformation under versatile conditions. With an optimized pore of 14 nm in diameter, we achieved the detection limit as low as 0.3 ng/μL, voltage polarity significantly influences the electro-osmotic force and CRP translocation behavior, and the pentameric conformation of CRP may dissociate into pro-inflammatory CRP isoforms and monomeric CRP at bias potential above 300 mV. CRP tends to translocate through nanopores faster along with the increase in pH values, due to more surface charge on both CRP and pore inner wall and stronger electro-osmotic force. The CRP could specifically bind with its aptamer of different concentrations to form complexes, and the complexes exhibited distinguishable nanopore translocation behavior compared with CRP alone. The variation of the molar ratio of aptamer significantly influences the orientation of CRP translocation. The plasma test under physiological conditions displayed the ability of the nanopore system on the CRP identification with a concentration of 3 ng/μL.
Collapse
Affiliation(s)
- Ji Wu
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Mingkun Zhang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Rui Zhu
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Zhong Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Yajie Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Bohua Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Ting Weng
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Shaoxi Fang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Liang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Deqiang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| |
Collapse
|
13
|
Toropov N, Osborne E, Joshi LT, Davidson J, Morgan C, Page J, Pepperell J, Vollmer F. SARS-CoV-2 Tests: Bridging the Gap between Laboratory Sensors and Clinical Applications. ACS Sens 2021; 6:2815-2837. [PMID: 34392681 PMCID: PMC8386036 DOI: 10.1021/acssensors.1c00612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
This review covers emerging biosensors for SARS-CoV-2 detection together with a review of the biochemical and clinical assays that are in use in hospitals and clinical laboratories. We discuss the gap in bridging the current practice of testing laboratories with nucleic acid amplification methods, and the robustness of assays the laboratories seek, and what emerging SARS-CoV-2 sensors have currently addressed in the literature. Together with the established nucleic acid and biochemical tests, we review emerging technology and antibody tests to determine the effectiveness of vaccines on individuals.
Collapse
Affiliation(s)
- Nikita Toropov
- Living
Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Eleanor Osborne
- Living
Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | - James Davidson
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Caitlin Morgan
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Joseph Page
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Justin Pepperell
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Frank Vollmer
- Living
Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|