1
|
Janićijević Ž, Baraban L. Integration Strategies and Formats in Field-Effect Transistor Chemo- and Biosensors: A Critical Review. ACS Sens 2025; 10:2431-2452. [PMID: 40232361 PMCID: PMC12038838 DOI: 10.1021/acssensors.4c03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
The continuous advances in micro- and nanofabrication technologies have inevitably led to major improvements in field-effect transistor (FET) design and architecture, significantly reducing the component footprint and enabling highly efficient integration into many electronic devices. Combined efforts in the areas of materials science, life sciences, and electronic engineering have unlocked opportunities to create ultrasensitive FET chemo- and biosensor devices that are coupled with more diverse and complex integration requirements in terms of hardware interfacing, reproducible functionality, and handling of analyte samples. Integration of FET chemo- and biosensors remains one of the major bottlenecks in bridging the gap between fundamental research concepts and commercial sensing devices. In this review, we critically discuss different strategies and formats of integration in the context of key requirements, fabrication scalability, and device complexity. The intentions of this review are 1) to provide a practical overview of successful FET sensor integration approaches, 2) to identify crucial challenges and factors limiting the extent of FET sensor integration, and 3) to highlight promising perspectives for future developments of FET sensor integration. We believe that our structured insights will be helpful for scientists and engineers of various profiles focusing on the design and development of FET-based chemo- and biosensor devices.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e. V. (HZDR), 01328 Dresden, Germany
| | - Larysa Baraban
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e. V. (HZDR), 01328 Dresden, Germany
- Else
Kröner-Fresenius Center for Digital Health (EKFZ), Technische Universität Dresden (TU Dresden), 01309 Dresden, Germany
| |
Collapse
|
2
|
Shi X, Pu H, Shi LL, He TC, Chen J. Advancing transistor-based point-of-care (POC) biosensors: additive manufacturing technologies and device integration strategies for real-life sensing. NANOSCALE 2025; 17:9804-9833. [PMID: 40171618 DOI: 10.1039/d4nr04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Infectious pathogens pose a significant threat to public health and healthcare systems, making the development of a point-of-care (POC) detection platform for their early identification a key focus in recent decades. Among the numerous biosensors developed over the years, transistor-based biosensors, particularly those incorporating nanomaterials, have emerged as promising candidates for POC detection, given their unique electronic characteristics, compact size, broad dynamic range, and real-time biological detection capabilities with limits of detection (LODs) down to zeptomolar levels. However, the translation of laboratory-based biosensors into practical applications faces two primary challenges: the cost-effective and scalable fabrication of high-quality transistor sensors and functional device integration. This review is structured into two main parts. The first part examines recent advancements in additive manufacturing technologies-namely in screen printing, inkjet printing, aerosol jet printing, and digital light processing-and evaluates their applications in the mass production of transistor-based biosensors. While additive manufacturing offers significant advantages, such as high quality, cost-effectiveness, rapid prototyping, less instrument reliance, less material waste, and adaptability to diverse surfaces, challenges related to uniformity and yield remain to be addressed before these technologies can be widely adopted for large-scale production. The second part focuses on various functional integration strategies to enhance the practical applicability of these biosensors, which is essential for their successful translation from laboratory research to commercialization. Specifically, it provides a comprehensive review of current miniaturized lab-on-a-chip systems, microfluidic manipulation, simultaneous sampling and detection, wearable implementation, and integration with the Internet of Things (IoT).
Collapse
Affiliation(s)
- Xiaoao Shi
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Haihui Pu
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Junhong Chen
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
3
|
Li Z, Luo D, Zhang Y, Niu X, Liu H. Smart Health Monitoring: Review of Electrochemical Biosensors for Cortisol Monitoring. Adv Healthc Mater 2025; 14:e2404454. [PMID: 40099568 DOI: 10.1002/adhm.202404454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Cortisol, also known as the stress hormone, is a crucial corticosteroid hormone that significantly increases secretion in the human body when facing notable stress. Monitoring cortisol levels is crucial for personal stress management and the diagnosis and treatment of certain diseases. Electrochemical biosensors combine the efficient sensitivity of electrochemical technology with the high specificity of biological recognition processes, making them widely applicable in the analysis of human body fluid components. This work outlines the working mechanism of cortisol electrochemical biosensors, focusing particularly on sensing elements such as antibodies, aptamers, and molecularly imprinted polymers. It provides detailed explanations of the operational principles of these different recognition elements. This work summarizes and evaluates the latest advancements in electrochemical biosensors for detecting cortisol in human body fluids, discussing the influence of different recognition elements on sensor design and electrochemical performance. Subsequently, through a comparative analysis of various sensor performances, the work further discusses the challenges in translating laboratory achievements into practical applications, including enhancing key metrics such as sensor reusability, reproducibility, long-term stability, continuous monitoring capability, and response time. Finally, it offers insights and recommendations for achieving real-time, continuous, and long-term monitoring with cortisol electrochemical biosensors.
Collapse
Affiliation(s)
- Zhijie Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Dan Luo
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Yaqian Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Xin Niu
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
- School of Arts, Tiangong University, Tianjin, 300387, China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
4
|
Choi CW, Hong D, Kim MG. Light source-free smartphone detection of salivary cortisol via colorimetric lateral flow immunoassay using a photoluminescent film. Biosens Bioelectron 2025; 271:116971. [PMID: 39612559 DOI: 10.1016/j.bios.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
An accurate assay was developed by integrating a novel lateral flow immunoassay (LFIA) design, smartphone-based photoluminescence detection, and computer-aided analysis using machine learning algorithms for the quantitative measurement of cortisol levels in human saliva samples. The unique LFIA strip incorporates a photoluminescent film, which enables photoluminescence detection without an external light source, beneath a nitrocellulose membrane. A smartphone is used to capture images of the LFIA test strips, and specific regions in the captured images are analyzed. The digitized data are then processed using a computer. Machine learning algorithms were employed to interpret the data and quantify cortisol levels in saliva samples obtained from 14 volunteers. The developed assay was shown to be highly accurate, and a low average difference of 18.12% was observed between the predicted cortisol levels and those measured using an established enzyme-linked immunosorbent assay (ELISA) in real saliva samples. The assay has a calculated limit of detection of approximately 139 pg/mL. Furthermore, the strong correlation (r = 0.935) between the results of the developed assay and the ELISA results supports its validity.
Collapse
Affiliation(s)
- Chang Woon Choi
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Chumdangwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Donggu Hong
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Chumdangwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Chumdangwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
5
|
Lee SJ, Cho WJ. Emerging Dual-Gate FET Sensor Paradigm for Ultra-Low Concentration Cortisol Detection in Complex Bioenvironments. BIOSENSORS 2025; 15:134. [PMID: 40136931 PMCID: PMC11940039 DOI: 10.3390/bios15030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Cortisol is a pivotal hormone regulating stress responses and is linked to various health conditions, making precise and continuous monitoring essential. Despite their non-invasive nature, conventional cortisol detection methods often suffer from inadequate sensitivity and reliability at low concentrations, limiting their diagnostic utility. To address these limitations, this study introduces a novel paradigm for high sensitivity cortisol detection using field-effect transistor (FET) sensors with dual-gate (DG) structures. The proposed sensor platform enhances sensitivity through capacitive coupling without requiring external circuits. Cortisol detection performance was evaluated by immobilizing monoclonal antibodies activated via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide onto a SnO2 thin film-based extended-gate. The results revealed a sensitivity of 14.3 mV/dec in single-gate mode, which significantly increased to 243.8 mV/dec in DG mode, achieving a detection limit of 276 pM. Additionally, the reliability and stability of the sensor were validated by evaluating drift effects, confirming its ability to provide accurate detection even in artificial saliva environments containing interfering substances. In conclusion, the DG-FET-based cortisol detection approach developed in this study significantly outperforms conventional FET-based methods, enabling precise monitoring at ultra-low concentrations. This approach holds significant potential for diverse bioassays requiring high sensitivity and reliability in complex environments.
Collapse
Affiliation(s)
| | - Won-Ju Cho
- Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea;
| |
Collapse
|
6
|
Balasamy S, Atchudan R, Arya S, Gunasekaran BM, Nesakumar N, Sundramoorthy AK. Cortisol: Biosensing and detection strategies. Clin Chim Acta 2024; 562:119888. [PMID: 39059481 DOI: 10.1016/j.cca.2024.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Cortisol, a crucial steroid hormone synthesized by the adrenal glands, has diverse impacts on multiple physiological processes, such as metabolism, immune function, and stress management. Disruption in cortisol levels can result in conditions like Cushing's syndrome and Addison's disease. This review provides an in-depth exploration of cortisol, covering its structure, various forms in the body, detection methodologies, and emerging trends in cancer treatment and detection. Various techniques for cortisol detection, including electrochemical, chromatographic, and immunoassay methods were discussed and highlighted for their merits and applications. Electrochemical immunosensing emerges as a promising approach, which offered high sensitivity and low detection limits. Moreover, the review delves into the intricate relationship between cortisol and cancer, emphasizing cortisol's role in cancer progression and treatment outcomes. Lastly, the utilization of biomarkers, in-silico modeling, and machine learning for electrochemical cortisol detection were explored, which showcased innovative strategies for stress monitoring and healthcare advancement.
Collapse
Affiliation(s)
- Sesuraj Balasamy
- Centre for Nano-Biosensors, Department of Prosthodontics and Materials Science, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu and Kashmir 180006, India
| | - Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics and Materials Science, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
7
|
Ram TB, Krishnan S, Jeevanandam J, Danquah MK, Thomas S. Emerging Biohybrids of Aptamer-Based Nano-Biosensing Technologies for Effective Early Cancer Detection. Mol Diagn Ther 2024; 28:425-453. [PMID: 38775897 DOI: 10.1007/s40291-024-00717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Cancer is a leading global cause of mortality, which underscores the imperative of early detection for improved patient outcomes. Biorecognition molecules, especially aptamers, have emerged as highly effective tools for early and accurate cancer cell identification. Aptamers, with superior versatility in synthesis and modification, offer enhanced binding specificity and stability compared with conventional antibodies. Hence, this article reviews diagnostic strategies employing aptamer-based biohybrid nano-biosensing technologies, focusing on their utility in detecting cancer biomarkers and abnormal cells. Recent developments include the synthesis of nano-aptamers using diverse nanomaterials, such as metallic nanoparticles, metal oxide nanoparticles, carbon-derived substances, and biohybrid nanostructures. The integration of these nanomaterials with aptamers significantly enhances sensitivity and specificity, promising innovative and efficient approaches for cancer diagnosis. This convergence of nanotechnology with aptamer research holds the potential to revolutionize cancer treatment through rapid, accurate, and non-invasive diagnostic methods.
Collapse
Affiliation(s)
| | | | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Michael K Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Sabu Thomas
- School of Polymer Science and Technology and School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
8
|
Sharma S, Kar D, Khanikar PD, Moudgil A, Mishra P, Das S. Hybrid MoSe 2/P3HT Transistor for Real-Time Ammonia Sensing in Biofluids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30648-30657. [PMID: 38843092 DOI: 10.1021/acsami.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Organic and inorganic hybrid field-effect transistors (FETs), utilizing layered molybdenum diselenide (MoSe2) and an organic semiconductor poly(3-hexylthiophene) (P3HT), are presented for biosensing applications. A new hybrid device structure that combines organic (P3HT) and inorganic (MoSe2) components is showcased for accurate and selective bioanalyte detection in human bodily fluids to overcome 2D-transition metal dichalcogenides (TMDs) nonspecific interactions. This hybrid structure utilizes organic and inorganic semiconductors' high surface-to-volume ratio, carrier transport, and conductivity for biosensing. Ammonia concentrations in saliva and plasma are closely linked to physiological and pathological conditions of the human body. A highly sensitive hybrid FET biosensor detects total ammonia (NH4+ and NH3) from 0.5 μM to 1 mM concentrations, with a detection limit of 0.65 μM in human bodily fluids. The sensor's ammonia specificity in artificial saliva against interfering species is showcased. Furthermore, the fabricated hybrid FET device exhibits a stable and repeatable response to ammonia in both saliva and plasma, achieving a remarkable response level of 2300 at a 1 mM concentration of ammonia, surpassing existing literature by 10-fold. This hybrid FET biosensing platform holds significant promise for developing a precise tool for the real-time monitoring of ammonia concentrations in human biological fluids, offering potential applications in point-of-care diagnostics.
Collapse
Affiliation(s)
- Sumit Sharma
- Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Debashree Kar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Prabal Dweep Khanikar
- University of Queensland-IIT Delhi Academy of Research (UQIDAR), Hauz Khas, New Delhi 110016, India
| | - Akshay Moudgil
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Samaresh Das
- Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
Janićijević Ž, Huang T, Bojórquez DIS, Tonmoy TH, Pané S, Makarov D, Baraban L. Design and Development of Transient Sensing Devices for Healthcare Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307232. [PMID: 38484201 PMCID: PMC11132064 DOI: 10.1002/advs.202307232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Indexed: 05/29/2024]
Abstract
With the ever-growing requirements in the healthcare sector aimed at personalized diagnostics and treatment, continuous and real-time monitoring of relevant parameters is gaining significant traction. In many applications, health status monitoring may be carried out by dedicated wearable or implantable sensing devices only within a defined period and followed by sensor removal without additional risks for the patient. At the same time, disposal of the increasing number of conventional portable electronic devices with short life cycles raises serious environmental concerns due to the dangerous accumulation of electronic and chemical waste. An attractive solution to address these complex and contradictory demands is offered by biodegradable sensing devices. Such devices may be able to perform required tests within a programmed period and then disappear by safe resorption in the body or harmless degradation in the environment. This work critically assesses the design and development concepts related to biodegradable and bioresorbable sensors for healthcare applications. Different aspects are comprehensively addressed, from fundamental material properties and sensing principles to application-tailored designs, fabrication techniques, and device implementations. The emerging approaches spanning the last 5 years are emphasized and a broad insight into the most important challenges and future perspectives of biodegradable sensors in healthcare are provided.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Tao Huang
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | | | - Taufhik Hossain Tonmoy
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZürichZürich8092Switzerland
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| |
Collapse
|
10
|
Xu B, Chang H, Yang G, Xu Z, Li J, Gu Z, Li J. An integrated wearable sticker based on extended-gate AlGaN/GaN high electron mobility transistors for real-time cortisol detection in human sweat. Analyst 2024; 149:958-967. [PMID: 38197472 DOI: 10.1039/d3an02115g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Cortisol hormone imbalances can be detected through non-invasive sweat monitoring using field-effect transistor (FET) biosensors, which provide rapid and sensitive detection. However, challenges like skin compatibility and integration with sweat collection have hindered FET biosensors as wearable sensing platforms. In this study, we present an integrated wearable sticker for real-time cortisol detection based on an extended-gate AlGaN/GaN high electron mobility transistor (HEMT) combined with a soft bottom substrate and flexible channel for sweat collection. The developed devices exhibit excellent linearity (R2 = 0.990) and a high sensitivity of 1.245 μA dec-1 for cortisol sensing from 1 nM to 100 μM in high-ionic-strength solution, with successful cortisol detection demonstrated using authentic human sweat samples. Additionally, the chip's microminiature design effectively reduces bending impact during the wearable process of traditional soft binding sweat sensors. The extendedgate structure design of the HEMT chip enhances both width-to-length ratio and active sensing area, resulting in an exceptionally low detection limit of 100 fM. Futhermore, due to GaN material's inherent stability, this device exhibits long-term stability with sustained performance within a certain attenuation range even after 60 days. These stickers possess small, lightweight, and portable features that enable real-time cortisol detection within 5 minutes through direct sweat collection. The application of this technology holds great potential in the field of personal health management, facilitating users to conveniently monitor their mental and physical conditions.
Collapse
Affiliation(s)
- Boxuan Xu
- The College of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People's Republic of China.
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Hui Chang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Guo Yang
- School of Electrical and Mechanical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhan Xu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Jun Li
- The College of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People's Republic of China.
| | - Zhiqi Gu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Jiadong Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
11
|
Janićijević Ž, Nguyen-Le TA, Alsadig A, Cela I, Žilėnaite R, Tonmoy TH, Kubeil M, Bachmann M, Baraban L. Methods gold standard in clinic millifluidics multiplexed extended gate field-effect transistor biosensor with gold nanoantennae as signal amplifiers. Biosens Bioelectron 2023; 241:115701. [PMID: 37757510 DOI: 10.1016/j.bios.2023.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
We present a portable multiplexed biosensor platform based on the extended gate field-effect transistor and demonstrate its amplified response thanks to gold nanoparticle-based bioconjugates introduced as a part of the immunoassay. The platform comprises a disposable chip hosting an array of 32 extended gate electrodes, a readout module based on a single transistor operating in constant charge mode, and a multiplexer to scan sensing electrodes one-by-one. Although employing only off-the-shelf electronic components, our platform achieves sensitivities comparable to fully customized nanofabricated potentiometric sensors. In particular, it reaches a detection limit of 0.2 fM for the pure molecular assay when sensing horseradish peroxidase-linked secondary antibody (∼0.4 nM reached by standard microplate methods). Furthermore, with the gold nanoparticle bioconjugation format, we demonstrate ca. 5-fold amplification of the potentiometric response compared to a pure molecular assay, at the detection limit of 13.3 fM. Finally, we elaborate on the mechanism of this amplification and propose that nanoparticle-mediated disruption of the diffusion barrier layer is the main contributor to the potentiometric signal enhancement. These results show the great potential of our portable, sensitive, and cost-efficient biosensor for multidimensional diagnostics in the clinical and laboratory settings, including e.g., serological tests or pathogen screening.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Trang-Anh Nguyen-Le
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Ahmed Alsadig
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Isli Cela
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Rugilė Žilėnaite
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany; Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko g. 24, LT-03225, Vilnius, Lithuania
| | - Taufhik Hossain Tonmoy
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| |
Collapse
|
12
|
Zhang C, Parichenko A, Choi W, Shin S, Panes-Ruiz LA, Belyaev D, Custódio TF, Löw C, Lee JS, Ibarlucea B, Cuniberti G. Sybodies as Novel Bioreceptors toward Field-Effect Transistor-Based Detection of SARS-CoV-2 Antigens. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40191-40200. [PMID: 37603713 DOI: 10.1021/acsami.3c06073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The SARS-CoV-2 pandemic has increased the demand for low-cost, portable, and rapid biosensors, driving huge research efforts toward new nanomaterial-based approaches with high sensitivity. Many of them employ antibodies as bioreceptors, which have a costly development process that requires animal facilities. Recently, sybodies emerged as a new alternative class of synthetic binders and receptors with high antigen binding efficiency, improved chemical stability, and lower production costs via animal-free methods. Their smaller size is an important asset to consider in combination with ultrasensitive field-effect transistors (FETs) as transducers, which respond more intensely when biorecognition occurs near their surface. This work demonstrates the immobilization of sybodies against the spike protein of the virus on silicon surfaces, which are often integral parts of the semiconducting channel of FETs. Immobilized sybodies maintain the capability to capture antigens, even at low concentrations in the femtomolar range, as observed by fluorescence microscopy. Finally, the first proof of concept of sybody-modified FET sensing is provided using a nanoscopic silicon net as the sensitive area where the sybodies are immobilized. The future development of further sybodies against other biomarkers and their generalization in biosensors could be critical to decrease the cost of biodetection platforms in future pandemics.
Collapse
Affiliation(s)
- Chi Zhang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Alexandra Parichenko
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Wonyeong Choi
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonghwan Shin
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Luis Antonio Panes-Ruiz
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Dmitry Belyaev
- Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Dresden 01109, Germany
| | - Tânia Filipa Custódio
- Centre for Structural Systems Biology (CSSB), European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany, Notkestraße 85, Hamburg 22607, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany, Notkestraße 85, Hamburg 22607, Germany
| | - Jeong-Soo Lee
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| |
Collapse
|
13
|
Wang J, Chen D, Huang W, Yang N, Yuan Q, Yang Y. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring. EXPLORATION (BEIJING, CHINA) 2023; 3:20210027. [PMID: 37933385 PMCID: PMC10624392 DOI: 10.1002/exp.20210027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Nano-biosensors that are composed of recognition molecules and nanomaterials have been extensively utilized in disease diagnosis, health management, and environmental monitoring. As a type of nano-biosensors, molecular specificity field-effect transistor (FET) biosensors with signal amplification capability exhibit prominent advantages including fast response speed, ease of miniaturization, and integration, promising their high sensitivity for molecules detection and identification. With intrinsic characteristics of high stability and structural tunability, aptamer has become one of the most commonly applied biological recognition units in the FET sensing fields. This review summarizes the recent progress of FET biosensors based on aptamer functionalized nanomaterials in medical diagnosis and environmental monitoring. The structure, sensing principles, preparation methods, and functionalization strategies of aptamer modified FET biosensors were comprehensively summarized. The relationship between structure and sensing performance of FET biosensors was reviewed. Furthermore, the challenges and future perspectives of FET biosensors were also discussed, so as to provide support for the future development of efficient healthcare management and environmental monitoring devices.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Wanting Huang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Nianjun Yang
- Department of Chemistry, Insititute of Materials ResearchHasselt UniversityHasseltBelgium
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| |
Collapse
|
14
|
Shajari S, Salahandish R, Zare A, Hassani M, Moossavi S, Munro E, Rashid R, Rosenegger D, Bains JS, Sanati Nezhad A. MicroSweat: A Wearable Microfluidic Patch for Noninvasive and Reliable Sweat Collection Enables Human Stress Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204171. [PMID: 36461733 PMCID: PMC9982588 DOI: 10.1002/advs.202204171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Indexed: 05/13/2023]
Abstract
Stress affects cognition, behavior, and physiology, leading to lasting physical and mental illness. The ability to detect and measure stress, however, is poor. Increased circulating cortisol during stress is mirrored by cortisol release from sweat glands, providing an opportunity to use it as an external biomarker for monitoring internal emotional state. Despite the attempts at using wearable sensors for monitoring sweat cortisol, there is a lack of reliable wearable sweat collection devices that preserve the concentration and integrity of sweat biomolecules corresponding to stress levels. Here, a flexible, self-powered, evaporation-free, bubble-free, surfactant-free, and scalable capillary microfluidic device, MicroSweat, is fabricated to reliably collect human sweat from different body locations. Cortisol levels are detected corresponding to severe stress ranging from 25 to 125 ng mL-1 averaged across multiple body regions and 100-1000 ng mL-1 from the axilla. A positive nonlinear correlation exists between cortisol concentration and stress levels quantified using the perceived stress scale (PSS). Moreover, owing to the sweat variation in response to environmental effects and physiological differences, the longitudinal and personalized profile of sweat cortisol is acquired, for the first time, for various body locations. The obtained sweat cortisol data is crucial for analyzing human stress in personalized and clinical healthcare sectors.
Collapse
Affiliation(s)
- Shaghayegh Shajari
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- StressynomicsHotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Azam Zare
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Mohsen Hassani
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Shirin Moossavi
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Physiology and PharmacologyUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- International Microbiome CentreCumming School of MedicineHealth Sciences CentreUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Emily Munro
- Department of Chemical and Petroleum EngineeringUniversity of CalgaryCalgaryAlbertaT2N1 N4Canada
| | - Ruba Rashid
- Department of Civil EngineeringUniversity of CalgaryCalgaryAlbertaT2N1 N4Canada
| | | | - Jaideep S. Bains
- StressynomicsHotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Amir Sanati Nezhad
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| |
Collapse
|
15
|
Sandoval Bojórquez D, Janićijević Ž, Palestina Romero B, Oliveros Mata ES, Laube M, Feldmann A, Kegler A, Drewitz L, Fowley C, Pietzsch J, Fassbender J, Tonn T, Bachmann M, Baraban L. Impedimetric Nanobiosensor for the Detection of SARS-CoV-2 Antigens and Antibodies. ACS Sens 2023; 8:576-586. [PMID: 36763494 PMCID: PMC9940615 DOI: 10.1021/acssensors.2c01686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
Detection of antigens and antibodies (Abs) is of great importance in determining the infection and immunity status of the population, as they are key parameters guiding the handling of pandemics. Current point-of-care (POC) devices are a convenient option for rapid screening; however, their sensitivity requires further improvement. We present an interdigitated gold nanowire-based impedance nanobiosensor to detect COVID-19-associated antigens (receptor-binding domain of S1 protein of the SARS-CoV-2 virus) and respective Abs appearing during and after infection. The electrochemical impedance spectroscopy technique was used to assess the changes in measured impedance resulting from the binding of respective analytes to the surface of the chip. After 20 min of incubation, the sensor devices demonstrate a high sensitivity of about 57 pS·sn per concentration decade and a limit of detection (LOD) of 0.99 pg/mL for anti-SARS-CoV-2 Abs and a sensitivity of around 21 pS·sn per concentration decade and an LOD of 0.14 pg/mL for the virus antigen detection. Finally, the analysis of clinical plasma samples demonstrates the applicability of the developed platform to assist clinicians and authorities in determining the infection or immunity status of the patients.
Collapse
Affiliation(s)
| | - Željko Janićijević
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
| | - Brenda Palestina Romero
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
| | - Eduardo Sergio Oliveros Mata
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
| | - Markus Laube
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
| | - Anja Feldmann
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
| | - Alexandra Kegler
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
| | - Laura Drewitz
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
| | - Ciarán Fowley
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
| | - Jens Pietzsch
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
- School
of Sciences, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Juergen Fassbender
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
| | - Torsten Tonn
- Transfusion
Medicine, Med. Faculty Carl-Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Institute
for Transfusion Medicine Dresden, German
Red Cross Blood Donation Service North-East, 01307 Dresden, Germany
| | - Michael Bachmann
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
- Tumor
Immunology, University Cancer Center (UCC), University Hospital Carl
Gustav Carus Dresden, Technische Universität
Dresden, 01307 Dresden, Germany
- National
Center for Tumor Diseases (NCT), Dresden, Germany. Faculty of Medicine
and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
- German
Cancer Consortium (DKTK), 01309 Dresden, Germany
| | - Larysa Baraban
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e.V. (HZDR), 01328 Dresden, Germany
| |
Collapse
|
16
|
Dong Y, Liu TL, Chen S, Nithianandam P, Matar K, Li J. A "Two-Part" Resonance Circuit Based Detachable Sweat Patch for Noninvasive Biochemical and Biophysical Sensing. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2210136. [PMID: 37521161 PMCID: PMC10373531 DOI: 10.1002/adfm.202210136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 08/01/2023]
Abstract
Wearable electronics play important roles in noninvasive, continuous, and personalized monitoring of multiple biosignals generated by the body. To unleash their full potential for next-generation human centered bio-integrated electronics, the wireless sensing capability is a desirable feature. However, state-of-the-art wireless sensing technologies exploit rigid and bulky electronic modules for power supply, signal generation, and data transmission. This study reports a battery-free device technology based on a "two-part" resonance circuit model with modularized, physically separated, and detachable functional units for magnetic coupling and biosensing. The resulting platform combines advantages of electronics and microfluidics with low cost, minimized form factors, and improved performance stability. Demonstration of a detachable sweat patch capable of simultaneous recording of cortisol concentration, pH value, and temperature highlights the potential of the "two-part" circuit for advanced, transformative biosensing. The resulting wireless sensors provide a new engineering solution to monitoring biosignals through intimate and seamless integration with skin surfaces.
Collapse
Affiliation(s)
- Yan Dong
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Tzu-Li Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Prasad Nithianandam
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Keyan Matar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Tamiya E, Osaki S, Tsuchihashi T, Ushijima H, Tsukinoki K. Point-of-Care Diagnostic Biosensors to Monitor Anti-SARS-CoV-2 Neutralizing IgG/sIgA Antibodies and Antioxidant Activity in Saliva. BIOSENSORS 2023; 13:167. [PMID: 36831933 PMCID: PMC9953869 DOI: 10.3390/bios13020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Monitoring biomarkers is a great way to assess daily physical condition, and using saliva instead of blood samples is more advantageous as the process is simple and allows individuals to test themselves. In the present study, we analyzed the titers of neutralizing antibodies, IgG and secretory IgA (sIgA), in response to the SARS-CoV-2 vaccine, in saliva. A total of 19 saliva and serum samples were collected over a 10-month period 3 weeks after the first vaccine, 8 months after the second vaccine, and 1 month after the third vaccine. The ranges of antibody concentrations post-vaccination were: serum IgG: 81-15,000 U/mL, salivary IgG: 3.4-330 U/mL, and salivary IgA: 58-870 ng/mL. A sharp increase in salivary IgG levels was observed after the second vaccination. sIgA levels also showed an increasing trend. A correlation with trends in serum IgG levels was observed, indicating the possibility of using saliva to routinely assess vaccine efficacy. The electrochemical immunosensor assay developed in this study based on the gold-linked electrochemical immunoassay, and the antioxidant activity measurement based on luminol electrochemiluminescence (ECL), can be performed using portable devices, which would prove useful for individual-based diagnosis using saliva samples.
Collapse
Affiliation(s)
- Eiichi Tamiya
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| | - Shuto Osaki
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | - Hiromi Ushijima
- BioDevice Technology Ltd., 2-3 Asahidai, Nomi 923-1211, Ishikawa, Japan
| | - Keiichi Tsukinoki
- Department of Environmental Pathology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-0003, Kanagawa, Japan
| |
Collapse
|
18
|
Trusso Sfrazzetto G, Santonocito R. Nanomaterials for Cortisol Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3790. [PMID: 36364563 PMCID: PMC9658644 DOI: 10.3390/nano12213790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Space represents one of the most dangerous environments for humans, which can be affected by high stress levels. This can lead to severe physiological problems, such as headaches, gastrointestinal disorders, anxiety, hypertension, depression, and coronary heart diseases. During a stress condition, the human body produces specific hormones, such as dopamine, adrenaline, noradrenaline, and cortisol. In particular, the control of cortisol levels can be related to the stress level of an astronaut, particularly during a long-term space mission. The common analytical methods (HPLC, GC-MS) cannot be used in an extreme environment, such as a space station, due to the steric hindrance of the instruments and the absence of gravity. For these reasons, the development of smart sensing devices with a facile and fast analytical protocol can be extremely useful for space applications. This review summarizes the recent (from 2011) miniaturized sensoristic devices based on nanomaterials (gold and carbon nanoparticles, nanotubes, nanowires, nano-electrodes), which allow rapid and real-time analyses of cortisol levels in biological samples (such as saliva, urine, sweat, and plasma), to monitor the health conditions of humans under extreme stress conditions.
Collapse
Affiliation(s)
- Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Sciences and Technology (I.N.S.T.M.), Research Unit of Catania, 95100 Catania, Italy
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
| |
Collapse
|
19
|
Chen H, Deng L, Sun J, Li H, Zhu X, Wang T, Jiang Y. Dynamic Detection of HbA1c Using a Silicon Nanowire Field Effect Tube Biosensor. BIOSENSORS 2022; 12:916. [PMID: 36354424 PMCID: PMC9688244 DOI: 10.3390/bios12110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
As an emerging diabetes diagnostic indicator and a dynamic change index, HbA1c can not only reflect the average blood glucose level over a period of time but can also well predict the incidence of related microvascular complications. It is important to develop a detection method that can dynamically characterize HbA1c. Silicon nanowire (SiNW) devices were mass-produced using top-down sputtering technology, and a microdialyzer was installed in a SiNW field effect tube biosensor detection system. Finally, the detection system was used to detect HbA1c levels quantitatively and dynamically in experimental rabbits. Various measurements showed that mass-produced SiNW devices have ideal dimensions, stable structures, and good performance. A series of microscopy results showed that the SiNW surface can be functionalized for intermolecular interactions. The addition of a dialysis device can effectively overcome Debye shielding, making the blood test similar to the pure standard test. Finally, the dynamic detection of HbA1c within 40 h was realized. SiNW biosensors are capable of the dynamic detection of biomolecules, and dynamic observation of the interaction between blood glucose and HbA1c provides new ideas for the diagnosis and treatment of patients with diabetes. Therefore, the SiNW biosensor can reflect the dynamic changes in HbA1c in a shorter time, which has a certain potential value in the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Hang Chen
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lijuan Deng
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jialin Sun
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Hang Li
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Xiaoping Zhu
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tong Wang
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Yanfeng Jiang
- Internet of Things Institute, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Nguyen-Le TA, Bartsch T, Wodtke R, Brandt F, Arndt C, Feldmann A, Sandoval Bojorquez DI, Roig AP, Ibarlucea B, Lee S, Baek CK, Cuniberti G, Bergmann R, Puentes-Cala E, Soto JA, Kurien BT, Bachmann M, Baraban L. Nanosensors in clinical development of CAR-T cell immunotherapy. Biosens Bioelectron 2022; 206:114124. [PMID: 35272215 DOI: 10.1016/j.bios.2022.114124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
Immunotherapy using CAR-T cells is a new technological paradigm for cancer treatment. To avoid severe side effects and tumor escape variants observed for conventional CAR-T cells approach, adaptor CAR technologies are under development, where intermediate target modules redirect immune cells against cancer. In this work, silicon nanowire field-effect transistors are used to develop target modules for an optimized CAR-T cell operation. Focusing on a library of seven variants of E5B9 peptide that is used as CAR targeting epitope, we performed multiplexed binding tests using nanosensor chips. These peptides had been immobilized onto the sensor to compare the transistor signals upon titration with anti-La 5B9 antibodies. The correlation of binding affinities and sensor sensitivities enabled a selection of candidates for the interaction between CAR and target modules. An extremely low detection limit was observed for the sensor, down to femtomolar concentration, outperforming the current assay of the same purpose. Finally, the CAR T-cells redirection capability of selected peptides in target modules was proven successful in an in-vitro cytotoxicity assay. Our results open the perspective for the nanosensors to go beyond the early diagnostics in clinical cancer research towards developing and monitoring immunotherapeutic treatment, where the quantitative analysis with the standard techniques is limited.
Collapse
Affiliation(s)
- Trang Anh Nguyen-Le
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Tabea Bartsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Florian Brandt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Diana Isabel Sandoval Bojorquez
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Arnau Perez Roig
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Bergoi Ibarlucea
- Institute for Materials Science, Max Bergmann Center for Biomaterials, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Seungho Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Chan-Ki Baek
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center for Biomaterials, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Edinson Puentes-Cala
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta, 681011, Colombia
| | | | - Biji T Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307, Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, Germany. Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Dresden, Germany.
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany.
| |
Collapse
|
21
|
Karuppaiah G, Velayutham J, Hansda S, Narayana N, Bhansali S, Manickam P. Towards the development of reagent-free and reusable electrochemical aptamer-based cortisol sensor. Bioelectrochemistry 2022; 145:108098. [DOI: 10.1016/j.bioelechem.2022.108098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
|
22
|
Zhang R, Jia Y. A Disposable Printed Liquid Gate Graphene Field Effect Transistor for a Salivary Cortisol Test. ACS Sens 2021; 6:3024-3031. [PMID: 34344148 DOI: 10.1021/acssensors.1c00949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circadian rhythm of salivary cortisol is of clinical significance, tracking salivary cortisol in domicile is welcomed by both doctor and patient, due to its merits of noninvasion, ease of sampling, and free-of-stress response. Here, we present a portable salivary cortisol test setup based on a liquid gate graphene field effect transistor (Lg-GFET) for the first time. In this work, the Lg-GFET was prepared by the printing technology and exploited as a sensitive material. In the procedures of device preparation, the modified liquid exfoliation method and direct-ink-write technology were utilized for synthesizing the graphene ink and printing Lg-GFETs; then, the as-prepared Lg-GFETs were decorated and functionalized by tetrakis(4-carboxyphenyl) porphyrin and the cortisol aptamer, successively. Their sensitivity, selectivity, and robustness are seriously examined. The test results indicate that the sensors have good linear sensitivities over a seven-log analyte concentration range (0.01 to 104 nM) and the anti-interference ability to distinguish from the substancess with similar chemical structures. Moreover, the conceptual application for tracking circadian rhythm was carried out successfully. Conclusively, the proposed flexible Lg-GFET-based salivary cortisol detection platform can satisfy the requirements of the salivary cortisol's assay for instant detection. Additionally, it also provides an alternative solution for developing similar household medical appliances.
Collapse
Affiliation(s)
- Rong Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yunfang Jia
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|