1
|
Saito K, Watanabe H, Nakashima K, Ono M. Preclinical Characterization of Novel FAP-2286-Based Radioligand with Albumin Binder for Improved Tumor Retention. ACS Med Chem Lett 2025; 16:596-601. [PMID: 40236533 PMCID: PMC11995215 DOI: 10.1021/acsmedchemlett.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Fibroblast activation protein (FAP) is an attractive biomarker for tumor-targeting agents in cancer diagnosis and therapy. FAP-2286 shows retention in FAP-expressing tumors and is known as a promising FAP-targeting radioligand. In this study, we aimed to develop a FAP-2286 derivative that demonstrates higher tumor retention than FAP-2286. We designed DOTAGA-FAP-2286 and DOTAGA-FAP-2286-ALB by replacing DO3A with 2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-1-yl)pentanedioic acid (DOTAGA) and introducing an albumin binder. Both compounds were successfully radiolabeled with 111In. Compared with [111In]In-DOTAGA-FAP-2286, [111In]In-DOTAGA-FAP-2286-ALB showed higher stability in murine plasma. In the cell competition binding study, In-DOTAGA-FAP-2286-ALB exhibited a higher FAP-binding affinity than In-DOTAGA-FAP-2286. In the albumin-binding assay, [111In]In-DOTAGA-FAP-2286-ALB showed a high binding rate in the solution with albumin. The biodistribution assay revealed marked tumor retention of [111In]In-DOTAGA-FAP-2286-ALB, resulting in the enhancement of predicted tumor AUC values of [225Ac]Ac-DOTAGA-FAP-2286-ALB. These results suggest advantages of the introduction of an albumin binder to FAP-2286.
Collapse
Affiliation(s)
- Kosuke Saito
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Kazuma Nakashima
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Wang J, Serafini A, Kuker R, Ayubcha C, Cohen G, Nadel H, McKinney A, Alavi A, Yu JQ. The State-of-the-Art PET Tracers in Glioblastoma and High-grade Gliomas and Implications for Theranostics. PET Clin 2025; 20:147-164. [PMID: 39482219 DOI: 10.1016/j.cpet.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
MR imaging is currently the main imaging modality used for the diagnosis and post therapeutic assessment of glioblastomas. Recently, several innovative PET radioactive tracers have been investigated for the evaluation of glioblastomas (GBM). These radiotracers target several biochemical and pathophysiological processes seen in tumors. These include glucose metabolism, DNA synthesis and cell proliferation, amino acid transport, cell membrane biosynthesis, specific membrane antigens such as prostatic specific membrane antigens, fibroblast activation protein inhibitor, translocator protein and hypoxia sensing agents, and antibodies targeting specific cell receptor antigen. This review aims to discuss the clinical value of these PET radiopharmaceuticals in the evaluation and treatment of GBMs.
Collapse
Affiliation(s)
- Jiaqiong Wang
- Division of Nuclear Medicine, Department of Radiology, Temple University Health System, Fox Chase Cancer Center, Philadelphia, PA 19140, USA.
| | - Aldo Serafini
- Division of Nuclear Medicine, Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, FL, USA
| | - Russ Kuker
- Division of Nuclear Medicine, Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, FL, USA
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gary Cohen
- Department of Radiology, Temple University Health System, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Helen Nadel
- Department of Radiology, Lucile Packard Children's Hospital at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander McKinney
- Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, FL, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jian Q Yu
- Division of Nuclear Medicine, Department of Radiology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
3
|
Li Z, Ruan Q, Jiang Y, Wang Q, Yin G, Feng J, Zhang J. Current Status and Perspectives of Novel Radiopharmaceuticals with Heterologous Dual-targeted Functions: 2013-2023. J Med Chem 2024; 67:21644-21670. [PMID: 39648432 DOI: 10.1021/acs.jmedchem.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Radiotracers provide molecular- and cellular-level information in a noninvasive manner and have become important tools for precision medicine. In particular, the successful clinical application of radioligand therapeutic (RLT) has further strengthened the role of nuclear medicine in clinical treatment. The complicated microenvironment of the lesion has rendered traditional single-targeted radiopharmaceuticals incapable of fully meeting the requirements. The design and development of dual-targeted and multitargeted radiopharmaceuticals have rapidly emerged. In recent years, significant progress has been made in the development of heterologous dual-targeted radiopharmaceuticals. This perspective aims to provide a comprehensive overview of the recent progress in these heterologous dual-targeted radiopharmaceuticals, with a special focus on the design of ligand structures, pharmacological properties, and preclinical and clinical evaluation. Furthermore, future directions are discussed from this perspective.
Collapse
Affiliation(s)
- Zuojie Li
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
4
|
Yu Z, Jiang Z, Cheng X, Yuan L, Chen H, Ai L, Wu Z. Development of fibroblast activation protein-α radiopharmaceuticals: Recent advances and perspectives. Eur J Med Chem 2024; 277:116787. [PMID: 39197253 DOI: 10.1016/j.ejmech.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Fibroblast activation protein-α (FAP) has emerged as a promising target in the field of radiopharmaceuticals due to its selective expression in cancer-associated fibroblasts (CAFs) and other pathological conditions involving fibrosis and inflammation. Recent advancements have focused on developing FAP-specific radioligands for diagnostic imaging and targeted radionuclide therapy. This perspective summarized the latest progress in FAP radiopharmaceutical development, highlighting novel radioligands, preclinical evaluations, and potential clinical applications. Additionally, we analyzed the advantages and existing problems of targeted FAP radiopharmaceuticals, and discussed the key breakthrough directions of this target, so as to improve the development and conversion of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Leilei Yuan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zehui Wu
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
5
|
Li L, Cao R, Chen K, Qu C, Qian K, Lin J, Li R, Lai C, Wang X, Han Z, Xu Z, Zhou L, Song S, Zhu W, Cheng Z. Development of an FAP-Targeted PET Probe Based on a Novel Quinolinium Molecular Scaffold. Bioconjug Chem 2024; 35:1309-1317. [PMID: 38954733 DOI: 10.1021/acs.bioconjchem.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Fibroblast activation protein (FAP) has recently gained significant attention as a promising tumor biomarker for both diagnosis and therapeutic applications. A series of radiopharmaceuticals based on fibroblast activation protein inhibitors (FAPIs) have been developed and translated into the clinic. Though some of them such as radiolabeled FAPI-04 probes have achieved favorable in vivo imaging performance, further improvement is still highly desired for obtaining radiopharmaceuticals with a high theranostics potential. In this study, we innovatively designed an FAPI ligand SMIC-3002 by changing the core quinoline motif of FAPI-04 to the quinolinium scaffold. The engineered molecule was further radiolabeled with 68Ga to generate a positron emission tomography (PET) probe, [68Ga]Ga-SMIC-3002, which was then evaluated in vitro and in vivo. [68Ga]Ga-SMIC-3002 demonstrated high in vitro stability, nanomolar affinity for FAP (8 nM for protein, 23 nM for U87MG cells), and specific uptake in FAP-expressing tumors, with a tumor/muscle ratio of 19.1 and a tumor uptake of 1.48 ± 0.03 ID/g% at 0.5 h in U87MG tumor-bearing mice. In summary, the quinolinium scaffold can be successfully used for the development of the FAP-targeted tracer. [68Ga]Ga-SMIC-3002 not only shows high potential for clinical translation but also offers insights into designing a new generation of FAPI tracers.
Collapse
Affiliation(s)
- Lei Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 201203, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Rui Cao
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Kaixin Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 201203, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chunrong Qu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jia Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 201203, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Renda Li
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
| | - Chaoquan Lai
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
| | - Xiao Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zijian Han
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liping Zhou
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| |
Collapse
|
6
|
Shang Y, Zhang G, Yao X, Lai C, Wang F, Zeng B, Liu E, Yuan H, Cheng Z, Jiang L. [ 68Ga]Ga-labeled FAPI Conjugated with Gly-Pro Sequence for PET Imaging of Malignant Tumors. Mol Imaging Biol 2024; 26:729-737. [PMID: 38987449 DOI: 10.1007/s11307-024-01935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE To improve tumor uptake and prolong tumor retention, a novel fibroblast activation protein (FAP) ligand based on a quinoline-based FAP inhibitor (FAPI) conjugated with the Gly-Pro sequence and 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid (DOTA) was radiolabeled with [68Ga]GaCl3 ([68Ga]Ga-DOTA-GPFAPI-04). Due to the tumor heterogeneity, this study aimed to further validate the preclinical value of [68Ga]Ga-DOTA-GPFAPI-04 PET imaging in tumor mice models with different FAP expression levels. METHODS [68Ga]Ga-DOTA-GPFAPI-04 was synthesized and its partition coefficient was measured. The stability of [68Ga]Ga-DOTA-GPFAPI-04 was tested in phosphate-buffered saline (PBS, pH 7.4) and fetal bovine serum (FBS). Small animal PET and semi-quantitative studies were conducted in Panc-1 and A549 xenograft tumor mice models compared with [68Ga]Ga-DOTA-FAPI-04. Immunofluorescent and immunohistochemical staining and western blot assay were performed to confirm FAP expression in xenograft tumors. RESULTS [68Ga]Ga-DOTA-GPFAPI-04 exhibited a radiochemical purity of > 99% and high stability in PBS and FBS. [68Ga]Ga-DOTA-GPFAPI-04 had higher hydrophilic property than [68Ga]Ga-DOTA-FAPI-04 (-4.09 ± 0.05 vs -3.45 ± 0.05). Small animal PET and semi-quantitative analysis revealed Panc-1 xenograft tumor displayed higher tumor uptake of [68Ga]Ga-DOTA-GPFAPI-04 and tumor-to-background ratios compared to A549 xenograft tumor, consistent with the results of immunofluorescence, immunohistochemistry, and western blot. Moreover, [68Ga]Ga-DOTA-GPFAPI-04 demonstrated higher tumor accumulation and longer tumor retention than [68Ga]Ga-DOTA-FAPI-04 in both Panc-1 and A549 xenograft tumors. Furthermore, the FAP-binding specificity of [68Ga]Ga-DOTA-GPFAPI-04 was confirmed in vivo by co-injection of unlabeled GPFAPI-04. CONCLUSION [68Ga]Ga-DOTA-GPFAPI-04 showed more favorable in vivo tumor imaging and longer tumor retention compared to [68Ga]Ga-DOTA-FAPI-04, which has high potential to be a promising PET probe for detecting FAP-positive tumors.
Collapse
Affiliation(s)
- Yuxiang Shang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guojin Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinchao Yao
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chaoquan Lai
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Fanghu Wang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Baozhen Zeng
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Entao Liu
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hui Yuan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Lei Jiang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| |
Collapse
|
7
|
Zhao L, Kang F, Pang Y, Fang J, Sun L, Wu H, Lan X, Wang J, Chen H. Fibroblast Activation Protein Inhibitor Tracers and Their Preclinical, Translational, and Clinical Status in China. J Nucl Med 2024; 65:4S-11S. [PMID: 38719234 DOI: 10.2967/jnumed.123.266983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Indexed: 07/16/2024] Open
Abstract
Quinoline-based fibroblast activation protein (FAP) inhibitors (FAPIs) have recently emerged as a focal point in global nuclear medicine, underscored by their promising applications in cancer theranostics and the diagnosis of various nononcological conditions. This review offers an in-depth summary of the existing literature on the evolution and use of FAPI tracers in China, tracing their journey from preclinical to clinical research. Moreover, this review also assesses the diagnostic accuracy of FAPI PET for the most common cancers in China, analyzes its impact on oncologic management paradigms, and investigates the potential of FAP-targeted radionuclide therapy in patients with advanced or metastatic cancer. This review also summarizes studies using FAPI PET for nononcologic disorders in China. Thus, this qualitative overview presents a snapshot of China's engagement with FAPI tracers, aiming to guide future research endeavors.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yizhen Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China; and
| | - Long Sun
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - XiaoLi Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China;
| | - Haojun Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China;
- Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Du X, Gu B, Wang X, Wang X, Ji M, Zhang J, He S, Xu X, Yang Z, Song S. Preclinical Evaluation and a Pilot Clinical Positron Emission Tomography Imaging Study of [ 68Ga]Ga-FAPI-FUSCC-II. Mol Pharm 2024; 21:904-915. [PMID: 38179677 DOI: 10.1021/acs.molpharmaceut.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Fibroblast activation protein (FAP), a type II integral membrane serine protease, is a promising target for tumor diagnosis and therapy. OncoFAP has been recently discovered for PET imaging procedures for various solid malignancies. In this study, we presented the development of manual radiolabeling procedures for the preparation of OncoFAP-based radiopharmaceuticals for cancer imaging. A novel series of [68Ga/177Lu]Ga/Lu-FAPI-FUSCC-I/II were produced with high radiochemical yields. [68Ga]Ga-FAPI-FUSCC-I/II and [177Lu]Lu-FAPI-FUSCC-I/II were stable in phosphate-buffered saline, fetal bovine serum, and human serum for at least 3 h. In vitro cellular uptake and blocking experiments implied that they had specificity to FAP. Additionally, the low nanomolar IC50 values of FAPI-FUSCC-II indicated that it had a high target affinity to FAP. The in vivo biodistribution and blocking study in mice bearing HT-1080-FAP tumors showed that both exhibited specific tumor uptake. [68Ga]Ga-FAPI-FUSCC-II showed a higher tumor uptake and a higher tumor/nontarget ratio than [68Ga]Ga-FAPI-FUSCC-I and [68Ga]Ga-FAPI-04. The results of ex vivo biodistribution were in accordance with the biodistribution results. Clinical [68Ga]Ga-FAPI-FUSCC-II-PET/CT imaging further demonstrated its favorable biodistribution and kinetics with elevated and reliable uptake by primary tumors (maximum standardized uptake value (SUVmax), 12.17 ± 6.67) and distant metastases (SUVmax, 9.24 ± 4.28). In summary, [68Ga]Ga-FAPI-FUSCC-II displayed increased tumor uptake and retention compared to [68Ga]Ga-FAPI-04, giving it potential as a promising tracer for the diagnostic imaging of malignant tumors with positive FAP expression.
Collapse
Affiliation(s)
- Xinyue Du
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Xiao Wang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, P. R. China
| | - Xiangwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Mengjing Ji
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, P. R. China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Yu Z, Huang Y, Chen H, Jiang Z, Li C, Xie Y, Li Z, Cheng X, Liu Y, Li S, Liang Y, Wu Z. Design, Synthesis, and Evaluation of 18F-Labeled Tracers Targeting Fibroblast Activation Protein for Brain Imaging. ACS Pharmacol Transl Sci 2023; 6:1745-1757. [PMID: 37974629 PMCID: PMC10644484 DOI: 10.1021/acsptsci.3c00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Fibroblast activation protein (FAP) is closely related to central nervous system diseases such as stroke and brain tumors, but PET tracers that can be used for brain imaging have not been reported. Here, we designed, synthesized, and evaluated 18F-labeled UAMC1110 derivatives suitable for brain imaging targeting FAP. By substituting the F atom for the H atom on the aromatic ring of compound UAMC1110, 1a-c were designed and prepared. 1a-c were confirmed to have a high affinity for FAP through molecular docking and enzyme assay. [18F]1a-c were successfully prepared and confirmed to have high affinity. The stability in vivo indicates that no obvious metabolites of [18F]1a,b were found in the plasma 1 h after injection, which is beneficial for brain imaging. In vitro cell uptake experiments showed that [18F]1a,b and [68Ga]FAPI04 exhibited similar uptake and internalization rates. PET imaging of U87MG subcutaneous tumor showed that [18F]1a,b could penetrate the blood-brain barrier with higher uptake and longer retention time than [68Ga]FAPI04 (uptake at 62.5 min, 1.06 ± 0.23, 1.09 ± 0.25% ID/g vs 0.21 ± 0.10% ID/g, respectively). The brain-to-blood ratios of [18F]1a,b were better than [68Ga]FAPI04. Biodistribution and PET imaging showed that [18F]1a had better uptake on tumors and a higher tumor-to-muscle ratio than [18F]1b and [68Ga]FAPI04. Further imaging of U87MG intracranial glioma showed that [18F]1a outlined high-contrast gliomas in a short period of time compared to [18F]1b. Therefore, [18F]1a is expected to be useful in the diagnosis of FAP-related brain diseases.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Yong Huang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Hualong Chen
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zeng Jiang
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Chengze Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Yi Xie
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zhongjing Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Xuebo Cheng
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Yajing Liu
- School
of Pharmaceutical Science, Capital Medical
University, Beijing 100069, China
| | - Shengli Li
- Department
of Laboratory Animal Science, Capital Medical
University, Beijing 100069, China
| | - Ying Liang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Zubaľ M, Výmolová B, Matrasová I, Výmola P, Vepřková J, Syrůček M, Tomáš R, Vaníčková Z, Křepela E, Konečná D, Bušek P, Šedo A. Fibroblast activation protein as a potential theranostic target in brain metastases of diverse solid tumours. Pathology 2023; 55:806-817. [PMID: 37419841 DOI: 10.1016/j.pathol.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/09/2023]
Abstract
Brain metastases are a very common and serious complication of oncological diseases. Despite the vast progress in multimodality treatment, brain metastases significantly decrease the quality of life and prognosis of patients. Therefore, identifying new targets in the microenvironment of brain metastases is desirable. Fibroblast activation protein (FAP) is a transmembrane serine protease typically expressed in tumour-associated stromal cells. Due to its characteristic presence in the tumour microenvironment, FAP represents an attractive theranostic target in oncology. However, there is little information on FAP expression in brain metastases. In this study, we quantified FAP expression in samples of brain metastases of various primary origin and characterised FAP-expressing cells. We have shown that FAP expression is significantly higher in brain metastases in comparison to non-tumorous brain tissues, both at the protein and enzymatic activity levels. FAP immunopositivity was localised in regions rich in collagen and containing blood vessels. We have further shown that FAP is predominantly confined to stromal cells expressing markers typical of cancer-associated fibroblasts (CAFs). We have also observed FAP immunopositivity on tumour cells in a portion of brain metastases, mainly originating from melanoma, lung, breast, and renal cancer, and sarcoma. There were no significant differences in the quantity of FAP protein, enzymatic activity, and FAP+ stromal cells among brain metastasis samples of various origins, suggesting that there is no association of FAP expression and/or presence of FAP+ stromal cells with the histological type of brain metastases. In summary, we are the first to establish the expression of FAP and characterise FAP-expressing cells in the microenvironment of brain metastases. The frequent upregulation of FAP and its presence on both stromal and tumour cells support the use of FAP as a promising theranostic target in brain metastases.
Collapse
Affiliation(s)
- Michal Zubaľ
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Výmolová
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Matrasová
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Výmola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Vepřková
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Syrůček
- Department of Pathology, Na Homolce Hospital, Prague, Czech Republic
| | - Robert Tomáš
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Zdislava Vaníčková
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Evžen Křepela
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dora Konečná
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic; Departments of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
| | - Petr Bušek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Aleksi Šedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Lai C, Cao R, Li R, He C, Wang X, Shi H, Qu C, Qian K, Song S, Chen WH, Cheng Z. Fibroblast Activation Protein Targeting Probe with Gly-Pro Sequence for PET of Glioblastoma. Mol Pharm 2023; 20:4120-4128. [PMID: 37487027 DOI: 10.1021/acs.molpharmaceut.3c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
As an important cancer-associated fibroblast-specific biomarker, fibroblast activation protein (FAP) has become an attractive target for tumor diagnosis and treatment. However, most FAP-based radiotracers showed inadequate uptake and short retention in tumors. In this study, we designed and synthesized a novel FAP ligand (DOTA-GPFAPI-04) through assembling three functional moieties: a quinoline-based FAP inhibitor for specifically targeting FAP, a FAP substrate Gly-Pro as a linker for increasing the FAP protein interaction, and a 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) chelator for radiolabeling with different radionuclides. The FAP targeting ability of DOTA-GPFAPI-04 was investigated by molecular docking studies. DOTA-GPFAPI-04 was then radiolabeled with 68Ga to give [68Ga]Ga-DOTA-GPFAPI-04 for positron emission tomography (PET) imaging of glioblastoma. [68Ga]Ga-DOTA-GPFAPI-04 exhibited a purity of >98% and high stability analyzed by radio-HPLC in saline and mouse serum. Cell uptake studies demonstrated the targeting specificity of the probe. Further in vivo pharmacokinetic studies in normal mice demonstrated the quick clearance of the probe. Moreover, compared with the widely studied [68Ga]Ga-FAPI-04, [68Ga]Ga-DOTA-GPFAPI-04 showed much higher U87MG tumor uptake values (4.467 ± 0.379 for [68Ga]Ga-DOTA-GPFAPI-04 and 1.267 ± 0.208% ID/g for [68Ga]Ga-FAPI-04 at 0.5 h post-injection, respectively). The area under the curve based on time-activity curve (TAC) analysis for tumor radioactivity in small animal models was 422.5 for [68Ga]Ga-DOTA-GPFAPI-04 and 98.14 for [68Ga]Ga-FAPI-04, respectively, demonstrating that the former had longer tumor retention time. The tumor-to-muscle (T/M) ratio for [68Ga]Ga-DOTA-GPFAPI-04 reached 9.15 in a U87MG xenograft animal model. PET imaging and blocking assays showed that [68Ga]Ga-DOTA-GPFAPI-04 had specific tumor uptake. In summary, this study demonstrates the successful synthesis and evaluation of a novel FAPI targeting probe, [68Ga]Ga-DOTA-GPFAPI-04, with a Gly-Pro sequence. It shows favorable in vivo glioblastoma imaging properties and relatively long tumor retention, highlighting DOTA-GPFAPI-04 as a promising molecular scaffold for developing FAP targeting tumor theranostic agents.
Collapse
Affiliation(s)
- Chaoquan Lai
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rui Cao
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Renda Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunfeng He
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunrong Qu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
12
|
Wang Y, Yuan H, Liu N, Tang S, Feng Y, Liu Y, Cai P, Xia L, Zheng W, Chen Y, Zhou Z. High Affinity and FAP-Targeted Radiotracers: A Potential Design Strategy to Improve the Pharmacokinetics and Tumor Uptake for FAP Inhibitors. J Med Chem 2023. [PMID: 37390480 DOI: 10.1021/acs.jmedchem.3c00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Fibroblast activation protein (FAP) is overexpressed in cancer-associated fibroblasts, making it an attractive target for both imaging and therapy of malignancy. This study presents a range of novel FAP inhibitors derived from amino derivatives of UAMC1110, incorporating polyethylene glycol and bulky groups containing bifunctional DOTA chelators. The compounds labeled with gallium-68 were developed and characterized to study biodistribution properties and tumor-targeting performance in nude mice bearing U87MG tumor xenografts. Several tracers of interest were screened due to the advantages in imaging and tumor-specific uptake. Positron emission tomography scans revealed that polyethylene glycol-modified 68Ga-3-3 had a rapid penetration within the neoplastic tissue and excellent tumor-to-background contrast. In a comparative biodistribution study, naphthalene-modified 68Ga-6-3 exhibited more significant tumor uptake (∼50% ID/g, 1 h p.i.) than 68Ga-3-3 and 10-fold higher than 68Ga-FAPI-04 under the same conditions. Remarkably, 68Ga-8-1, combining the two structural design strategies, obtains superior imaging performance.
Collapse
Affiliation(s)
- Yinwen Wang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hongmei Yuan
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Nan Liu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Sufan Tang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yue Feng
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yang Liu
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ping Cai
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Xia
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenlu Zheng
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhijun Zhou
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
13
|
Ding J, Xu M, Chen J, Zhang P, Huo L, Kong Z, Liu Z. 86Y-Labeled Albumin-Binding Fibroblast Activation Protein Inhibitor for Late-Time-Point Cancer Diagnosis. Mol Pharm 2022; 19:3429-3438. [PMID: 35976352 DOI: 10.1021/acs.molpharmaceut.2c00579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibroblast activation protein inhibitor (FAPI) is a novel quinoline-based radiopharmaceutical that has theranostic potential, yet the limited tumor retention hinders late-time diagnosis and radionuclide treatment. This study synthesized four albumin-binding FAPIs (TE-FAPI-01 to 04) and evaluated their in vitro stability, binding affinity, in vivo biodistribution, and tumor uptake with 68Ga, 86Y, and 177Lu labeling, aiming to select the best molecule that has favorable pharmacokinetics to extend the blood circulation and tumor uptake in FAP-expressing tumors. All TE-FAPIs were stable in saline and plasma and displayed high FAP-binding affinity, with IC50 values ranging from 3.96 to 34.9 nmol/L. The capabilities of TE-FAPIs to be retained in circulation were higher than that of FAPI-04, and TE-FAPI-04 displayed minimum physiological uptake in major organs compared with other molecules. TE-FAPI-03 and TE-FAPI-04 exhibited persistent tumor accumulation, with tumor radioactivity 24 h after administration of 2.84 ± 1.19%ID/g and 3.86 ± 1.15%ID/g for 177Lu-TE-FAPI-03 and 177Lu-TE-FAPI-04, respectively, both of which outperformed 177Lu-FAPI-04 (0.34 ± 0.07%ID/g). TE-FAPI-04 was recognized as the albumin-binding FAPI with the most favorable pharmacokinetics and imaging performance. The enhanced circulation half-life and tumor uptake of TE-FAPI-04 aided the theranostics of malignant tumors and warrant further clinical investigations.
Collapse
Affiliation(s)
- Jie Ding
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Pu Zhang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ziren Kong
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Meng L, Fang J, Zhao L, Wang T, Yuan P, Zhao Z, Zhuang R, Lin Q, Chen H, Chen X, Zhang X, Guo Z. Rational Design and Pharmacomodulation of Protein-Binding Theranostic Radioligands for Targeting the Fibroblast Activation Protein. J Med Chem 2022; 65:8245-8257. [PMID: 35658448 DOI: 10.1021/acs.jmedchem.1c02162] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fibroblast activation protein (FAP), overexpressed on cancer-associated fibroblasts (CAFs), has become a valuable target for tumor diagnosis and therapy. However, most FAP-based radioligands show insufficient tumor uptake and retention. In this study, three novel albumin-binding FAP ligands (denoted as FSDD0I, FSDD1I, and FSDD3I) were labeled with 68Ga and 177Lu to overcome these limitations. Cell-based studies and molecular docking assays were performed to identify the specificity and protein-binding properties for FAP. Positron emission tomography (PET) scans in human hepatocellular carcinoma patient-derived xenografts (HCC-PDXs) animal models revealed longer blood retention of 68Ga-FSDD0I than 68Ga-FAPI-04, 68Ga-FSDD1I, and 68Ga-FSDD3I. Remarkably, 68Ga-FSDD3I had prominent tumor-to-nontarget (T/NT) ratios. The prominent tumor retention properties of 177Lu-FSDD0I in single photon emission computed tomography (SPECT) imaging and biodistribution studies were demonstrated. In summary, this study reports a proof-of-concept study of albumin-binding radioligands for FAP-targeted imaging and targeted radionuclide therapy (TRT).
Collapse
Affiliation(s)
- Lingxin Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Liang Zhao
- Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China.,Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Tingting Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Pu Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zuoquan Zhao
- Department of Nuclear Medicine, Cardiovascular Institute and FuWai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qin Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Haojun Chen
- Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
16
|
Enhancing fibroblast activation protein (FAP)-targeted radionuclide therapy with albumin binding, and beyond. Eur J Nucl Med Mol Imaging 2022; 49:1773-1777. [PMID: 35332379 PMCID: PMC9074086 DOI: 10.1007/s00259-022-05766-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Clinical summary of fibroblast activation protein inhibitor-based radiopharmaceuticals: cancer and beyond. Eur J Nucl Med Mol Imaging 2022; 49:2844-2868. [DOI: 10.1007/s00259-022-05706-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023]
|
18
|
Jia H, Xie T. Tracers progress for positron emission tomography imaging of glial-related disease. J Biomed Res 2022; 36:321-335. [PMID: 36131689 PMCID: PMC9548440 DOI: 10.7555/jbr.36.20220017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glial cells play an essential part in the neuron system. They can not only serve as structural blocks in the human brain but also participate in many biological processes. Extensive studies have shown that astrocytes and microglia play an important role in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, as well as glioma, epilepsy, ischemic stroke, and infections. Positron emission tomography is a functional imaging technique providing molecular-level information before anatomic changes are visible and has been widely used in many above-mentioned diseases. In this review, we focus on the positron emission tomography tracers used in pathologies related to glial cells, such as glioma, Alzheimer's disease, and neuroinflammation.
Collapse
Affiliation(s)
- Haoran Jia
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Tianwu Xie
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
- Tianwu Xie, Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China. Tel: +86-21-64048363, E-mail:
| |
Collapse
|