1
|
Arima A. Recent advances in single-particle analysis with nanopore technology. ANAL SCI 2025; 41:677-685. [PMID: 40186842 DOI: 10.1007/s44211-025-00757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
Nanopore sensors have been used as ultrasensitive tools for single-particle detection based on ionic current measurement. This simple, yet powerful technique allows researchers to acquire various physical properties of individual particles in a label-free manner. This mini-review describes the recent progress in nanopore technology demonstrated by our group. We first focus on the major advancements in nanopore architecture contributing to high-spatial resolution, followed by the detection strategy designed for long-term analysis. Then, we summarize the application of nanopore technology in infection diagnosis using machine learning. Following that, we discuss its potential for gene therapy, facilitated by high spatial resolution. Furthermore, we also highlighted potential applications of next-generation nanopore technology that contribute to a healthier future.
Collapse
Affiliation(s)
- Akihide Arima
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
2
|
Ratinho L, Meyer N, Greive S, Cressiot B, Pelta J. Nanopore sensing of protein and peptide conformation for point-of-care applications. Nat Commun 2025; 16:3211. [PMID: 40180898 PMCID: PMC11968944 DOI: 10.1038/s41467-025-58509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
The global population's aging and growth will likely result in an increase in chronic aging-related diseases. Early diagnosis could improve the medical care and quality of life. Many diseases are linked to misfolding or conformational changes in biomarker peptides and proteins, which affect their function and binding properties. Current clinical methods struggle to detect and quantify these changes. Therefore, there is a need for sensitive conformational sensors that can detect low-concentration analytes in biofluids. Nanopore electrical detection has shown potential in sensing subtle protein and peptide conformation changes. This technique can detect single molecules label-free while distinguishing shape or physicochemical property changes. Its proven sensitivity makes nanopore sensing technology promising for ultra-sensitive, personalized point-of-care devices. We focus on the capability of nanopore sensing for detecting and quantifying conformational modifications and enantiomers in biomarker proteins and peptides and discuss this technology as a solution to future societal health challenges.
Collapse
Affiliation(s)
- Laura Ratinho
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France
| | - Nathan Meyer
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France
| | | | - Benjamin Cressiot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Evry-Courcouronnes, France.
| |
Collapse
|
3
|
Meyer N, Torrent J, Balme S. Characterizing Prion-Like Protein Aggregation: Emerging Nanopore-Based Approaches. SMALL METHODS 2024; 8:e2400058. [PMID: 38644684 PMCID: PMC11672191 DOI: 10.1002/smtd.202400058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/10/2024] [Indexed: 04/23/2024]
Abstract
Prion-like protein aggregation is characteristic of numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This process involves the formation of aggregates ranging from small and potentially neurotoxic oligomers to highly structured self-propagating amyloid fibrils. Various approaches are used to study protein aggregation, but they do not always provide continuous information on the polymorphic, transient, and heterogeneous species formed. This review provides an updated state-of-the-art approach to the detection and characterization of a wide range of protein aggregates using nanopore technology. For each type of nanopore, biological, solid-state polymer, and nanopipette, discuss the main achievements for the detection of protein aggregates as well as the significant contributions to the understanding of protein aggregation and diagnostics.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonCedex 5Montpellier34095France
- INMUniversity of MontpellierINSERMMontpellier34095France
| | - Joan Torrent
- INMUniversity of MontpellierINSERMMontpellier34095France
| | - Sébastien Balme
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonCedex 5Montpellier34095France
| |
Collapse
|
4
|
Meyer N, Arroyo N, Roustan L, Janot J, Charles‐Achille S, Torrent J, Picaud F, Balme S. Secondary Nucleation of Aβ Revealed by Single-Molecule and Computational Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404916. [PMID: 39159070 PMCID: PMC11497034 DOI: 10.1002/advs.202404916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Understanding the mechanisms underlying amyloid-β (Aβ) aggregation is pivotal in the context of Alzheimer's disease. This study aims to elucidate the secondary nucleation process of Aβ42 peptides by combining experimental and computational methods. Using a newly developed nanopipette-based amyloid seeding and translocation assay, confocal fluorescence spectroscopy, and molecular dynamics simulations, the influence of the seed properties on Aβ aggregation is investigated. Both fragmented and unfragmented seeds played distinct roles in the formation of oligomers, with fragmented seeds facilitating the formation of larger aggregates early in the incubation phase. The results show that secondary nucleation leads to the formation of oligomers of various sizes and structures as well as larger fibrils structured in β-sheets. From these findings a mechanism of secondary nucleation involving two types of aggregate populations, one released and one growing on the mother fiber is proposed.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonMontpellier34095France
| | - Nicolas Arroyo
- UR SINERGIESUniversity of Besançon16 route de GrayBesançon25000France
| | - Lois Roustan
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonMontpellier34095France
| | - Jean‐Marc Janot
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonMontpellier34095France
| | - Saly Charles‐Achille
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonMontpellier34095France
| | - Joan Torrent
- INMUniversity of MontpellierINSERMMontpellier34090France
| | - Fabien Picaud
- UR SINERGIESUniversity of Besançon16 route de GrayBesançon25000France
| | - Sébastien Balme
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonMontpellier34095France
| |
Collapse
|
5
|
Charles-Achille S, Janot JM, Cayrol B, Balme S. Influence of Seed structure on Volume distribution of α-Synuclein Oligomer at Early Stages of Aggregation using nanopipette. Chembiochem 2024; 25:e202300748. [PMID: 38240074 DOI: 10.1002/cbic.202300748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Understanding α-synuclein aggregation is crucial in the context of Parkinson's disease. The objective of this study was to investigate the influence of aggregation induced by preformed seeding on the volume of oligomers during the early stages, using a label-free, single-molecule characterization approach. By utilizing nanopipettes of varying sizes, the volume of the oligomers can be calculated from the amplitude of the current blockade and pipette geometry. Further investigation of the aggregates formed over time in the presence of added seeds revealed an acceleration in the formation of large aggregates and the existence of multiple distinct populations of oligomers. Additionally, we observed that spontaneously formed seeds inhibited the formation of smaller oligomers, in contrast to the effect of HNE seeds. These results suggest that the seeds play a crucial role in the formation of oligomers and their sizes during the early stages of aggregation, whereas the classical thioflavin T assay remains negative.
Collapse
Affiliation(s)
- Saly Charles-Achille
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Bastien Cayrol
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000, Montpellier, France
| | - Sebastien Balme
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000, Montpellier, France
| |
Collapse
|
6
|
Schlotter T, Kloter T, Hengsteler J, Yang K, Zhan L, Ragavan S, Hu H, Zhang X, Duru J, Vörös J, Zambelli T, Nakatsuka N. Aptamer-Functionalized Interface Nanopores Enable Amino Acid-Specific Peptide Detection. ACS NANO 2024; 18:6286-6297. [PMID: 38355286 PMCID: PMC10906075 DOI: 10.1021/acsnano.3c10679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Single-molecule proteomics based on nanopore technology has made significant advances in recent years. However, to achieve nanopore sensing with single amino acid resolution, several bottlenecks must be tackled: controlling nanopore sizes with nanoscale precision and slowing molecular translocation events. Herein, we address these challenges by integrating amino acid-specific DNA aptamers into interface nanopores with dynamically tunable pore sizes. A phenylalanine aptamer was used as a proof-of-concept: aptamer recognition of phenylalanine moieties led to the retention of specific peptides, slowing translocation speeds. Importantly, while phenylalanine aptamers were isolated against the free amino acid, the aptamers were determined to recognize the combination of the benzyl or phenyl and the carbonyl group in the peptide backbone, enabling binding to specific phenylalanine-containing peptides. We decoupled specific binding between aptamers and phenylalanine-containing peptides from nonspecific interactions (e.g., electrostatics and hydrophobic interactions) using optical waveguide lightmode spectroscopy. Aptamer-modified interface nanopores differentiated peptides containing phenylalanine vs. control peptides with structurally similar amino acids (i.e., tyrosine and tryptophan). When the duration of aptamer-target interactions inside the nanopore were prolonged by lowering the applied voltage, discrete ionic current levels with repetitive motifs were observed. Such reoccurring signatures in the measured signal suggest that the proposed method has the possibility to resolve amino acid-specific aptamer recognition, a step toward single-molecule proteomics.
Collapse
Affiliation(s)
- Tilman Schlotter
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Tom Kloter
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Julian Hengsteler
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Kyungae Yang
- Department
of Medicine, Columbia University Irving
Medical Center, New York, New York 10032, United States
| | - Lijian Zhan
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Sujeni Ragavan
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Haiying Hu
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Xinyu Zhang
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Jens Duru
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - János Vörös
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Tomaso Zambelli
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Nako Nakatsuka
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Stuber A, Schlotter T, Hengsteler J, Nakatsuka N. Solid-State Nanopores for Biomolecular Analysis and Detection. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:283-316. [PMID: 38273209 DOI: 10.1007/10_2023_240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Advances in nanopore technology and data processing have rendered DNA sequencing highly accessible, unlocking a new realm of biotechnological opportunities. Commercially available nanopores for DNA sequencing are of biological origin and have certain disadvantages such as having specific environmental requirements to retain functionality. Solid-state nanopores have received increased attention as modular systems with controllable characteristics that enable deployment in non-physiological milieu. Thus, we focus our review on summarizing recent innovations in the field of solid-state nanopores to envision the future of this technology for biomolecular analysis and detection. We begin by introducing the physical aspects of nanopore measurements ranging from interfacial interactions at pore and electrode surfaces to mass transport of analytes and data analysis of recorded signals. Then, developments in nanopore fabrication and post-processing techniques with the pros and cons of different methodologies are examined. Subsequently, progress to facilitate DNA sequencing using solid-state nanopores is described to assess how this platform is evolving to tackle the more complex challenge of protein sequencing. Beyond sequencing, we highlight the recent developments in biosensing of nucleic acids, proteins, and sugars and conclude with an outlook on the frontiers of nanopore technologies.
Collapse
Affiliation(s)
- Annina Stuber
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Tilman Schlotter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Moderne M, Abrao-Nemeir I, Meyer N, Du J, Charles-Achille S, Janot JM, Torrent J, Lepoitevin M, Balme S. Combining iontronic, chromatography and nanopipette for Aβ42 aggregates detection and separation. Anal Chim Acta 2023; 1275:341587. [PMID: 37524475 DOI: 10.1016/j.aca.2023.341587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023]
Abstract
In this work, we aim to capture, detect and analysis at single molecule level Aβ42 aggregates. To this end, two strategies of track-etched nanopore membranes functionalization were investigated. The first one uses an aptamer and requires only three steps, whereas the second strategy uses Lecanemab antibodies and requires six steps. Out of the two presented strategies, the second one was found to be the most suitable to detect Aβ42 aggregates using a quick current-voltage readout. The resulting single nanopore was then upscale to multipore membranes to capture the Aβ42 aggregates before analysis through them through a single-molecule approach. By comparing the species present in the retentate and filtrate, we confirmed the membrane's affinity for the larger Aβ42 aggregates present in the sample. We found that chromatographic membranes combined with an ionic diode for binary on/off readout are powerful tools for detecting rare biomarkers before single molecule analysis.
Collapse
Affiliation(s)
- Mathilde Moderne
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Imad Abrao-Nemeir
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Nathan Meyer
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France; INM, University of Montpellier, INSERM, Montpellier, France
| | - Jun Du
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Saly Charles-Achille
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, Montpellier, France
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris (IMAP), UMR 8004 CNRS, Ecole Normale Supérieure de Paris, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université, 75005, Paris, France
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France.
| |
Collapse
|
9
|
Hirai M, Arai S, Iwase H. Fibrillization Process of Human Amyloid-Beta Protein (1-40) under a Molecular Crowding Environment Mimicking the Interior of Living Cells Using Cell Debris. Molecules 2023; 28:6555. [PMID: 37764331 PMCID: PMC10535490 DOI: 10.3390/molecules28186555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular crowding environments play a crucial role in understanding the mechanisms of biological reactions. Inside living cells, a diverse array of molecules coexists within a volume fraction ranging from 10% to 30% v/v. However, conventional spectroscopic methods often face difficulties in selectively observing the structures of particular proteins or membranes within such molecularly crowded environments due to the presence of high background signals. Therefore, it is crucial to establish in vitro measurement conditions that closely resemble the intracellular environment. Meanwhile, the neutron scattering method offers a significant advantage in selectively observing target biological components, even within crowded environments. Recently, we have demonstrated a novel scattering method capable of selectively detecting the structures of targeted proteins or membranes in a closely mimicking intracellular milieu achieved utilizing whole-cell contents (deuterated-cell debris). This method relies on the inverse contrast matching technique in neutron scattering. By employing this method, we successfully observed the fibrillization process of human amyloid beta-protein (Aβ 1-40) under a molecular crowding environment (13.1% w/v cell debris, Aβ/cell debris = ~1/25 w/w) that closely mimics the interior of living cells. Aβ protein is well known as a major pathogenic component of Alzheimer's disease. The present results combining model simulation analyses clearly show that the intracellular environment facilitates the potential formation of even more intricate higher-order aggregates of Aβ proteins than those previously reported.
Collapse
Affiliation(s)
- Mitsuhiro Hirai
- Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi 371-8510, Gunma, Japan
| | - Shigeki Arai
- National Institute for Quantum and Radiological Science and Technology, Tokai 319-1106, Ibaraki, Japan;
| | - Hiroki Iwase
- Comprehensive Research Organization for Science and Society (CROSS), Tokai 319-1106, Ibaraki, Japan;
| |
Collapse
|
10
|
Abrao-Nemeir I, Meyer N, Nouvel A, Charles-Achille S, Janot JM, Torrent J, Balme S. Aβ42 fibril and non-fibril oligomers characterization using a nanopipette. Biophys Chem 2023; 300:107076. [PMID: 37480837 DOI: 10.1016/j.bpc.2023.107076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
The Aβ42 aggregates with different structures and morphology was investigated through a single molecule label-free technique. To this end, the quartz nanopipettes were functionalized with polyethylene glycol. The set of Aβ42- epigallocatechin-3-gallate fibrils with length (from 85 nm to 250 nm) obtained by sonication was detected. The comparison of experimental and computed value of the amplitude of relative current blockade using a geometrical model show that for fibrils longer than 80 nm, the discriminating parameter is their diameter. Then, non-fibril oligomers obtain from Aβ42(Osaka) aggregation at different time seed was investigated. The analysis of the amplitude of relative current blockade shows that detected oligomers are smaller than 30 nm regardless the aggregation time. In addition, the wide distributions of the dwell time suggests the polymorph character of the sample.
Collapse
Affiliation(s)
- Imad Abrao-Nemeir
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Nathan Meyer
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France; INM, University of Montpellier, INSERM, Montpellier, France
| | - Alexis Nouvel
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Saly Charles-Achille
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, Montpellier, France
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| |
Collapse
|
11
|
Meyer N, Bentin J, Janot JM, Abrao-Nemeir I, Charles-Achille S, Pratlong M, Aquilina A, Trinquet E, Perrier V, Picaud F, Torrent J, Balme S. Ultrasensitive Detection of Aβ42 Seeds in Cerebrospinal Fluid with a Nanopipette-Based Real-Time Fast Amyloid Seeding and Translocation Assay. Anal Chem 2023; 95:12623-12630. [PMID: 37587130 DOI: 10.1021/acs.analchem.3c00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
In this work, early-stage Aβ42 aggregates were detected using a real-time fast amyloid seeding and translocation (RT-FAST) assay. Specifically, Aβ42 monomers were incubated in buffer solution with and without preformed Aβ42 seeds in a quartz nanopipette coated with L-DOPA. Then, formed Aβ42 aggregates were analyzed on flyby resistive pulse sensing at various incubation time points. Aβ42 aggregates were detected only in the sample with Aβ42 seeds after 180 min of incubation, giving an on/off readout of the presence of preformed seeds. Moreover, this RT-FAST assay could detect preformed seeds spiked in 4% cerebrospinal fluid/buffer solution. However, in this condition, the time to detect the first aggregates was increased. Analysis of Cy3-labeled Aβ42 monomer adsorption on a quartz substrate after L-DOPA coating by confocal fluorescence spectroscopy and molecular dynamics simulation showed the huge influence of Aβ42 adsorption on the aggregation process.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
- INM UM, CNRS, INSERM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Jeremy Bentin
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 route de Gray, 25030 Besançon, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Imad Abrao-Nemeir
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Saly Charles-Achille
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Maud Pratlong
- PerkinElmer, Parc Marcel Boiteux, 30200 Codolet, France
| | | | - Eric Trinquet
- PerkinElmer, Parc Marcel Boiteux, 30200 Codolet, France
| | - Veronique Perrier
- INM UM, CNRS, INSERM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 route de Gray, 25030 Besançon, France
| | - Joan Torrent
- INM UM, CNRS, INSERM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
12
|
Punia B, Chaudhury S. Microscopic Mechanism of Macromolecular Crowder-Assisted DNA Capture and Translocation through Biological Nanopores. J Phys Chem B 2023. [PMID: 37294938 DOI: 10.1021/acs.jpcb.3c02792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological nanopore sensors are widely used for genetic sequencing as nucleic acids and other molecules translocate through them across membranes. Recent studies have shown that the transport of these polymers through nanopores is strongly influenced by macromolecular bulk crowders. By using poly(ethylene glycol) (PEG) molecules as crowders, experiments have shown an increase in the capture rates and translocation times of polymers through an α-hemolysin (αHL) nanopore, which provides high-throughput signals and accurate sensing. A clear molecular-level understanding of how the presence of PEGs offers such desirable outcomes in nanopore sensing is still missing. In this work, we present a new theoretical approach to probe the effect of PEG crowders on DNA capture and translocation through the αHL nanopore. We develop an exactly solvable discrete-state stochastic model based on the cooperative partitioning of individual polycationic PEGs within the cavity of the αHL nanopore. It is argued that the apparent electrostatic interactions between the DNA and PEGs control all of the dynamic processes. Our analytical predictions find excellent agreements with existing experiments, thereby strongly supporting our theory.
Collapse
Affiliation(s)
- Bhawakshi Punia
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
13
|
Chen X, Zhou S, Wang Y, Zheng L, Guan S, Wang D, Wang L, Guan X. Nanopore Single-molecule Analysis of Biomarkers: Providing Possible Clues to Disease Diagnosis. Trends Analyt Chem 2023; 162:117060. [PMID: 38106545 PMCID: PMC10722900 DOI: 10.1016/j.trac.2023.117060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic Covid-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.
Collapse
Affiliation(s)
- Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Ling Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sarah Guan
- Hinsdale Central High School, Hinsdale, IL 60521, USA
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
14
|
Chau C, Marcuccio F, Soulias D, Edwards MA, Tuplin A, Radford SE, Hewitt E, Actis P. Probing RNA Conformations Using a Polymer-Electrolyte Solid-State Nanopore. ACS NANO 2022; 16:20075-20085. [PMID: 36279181 PMCID: PMC9798860 DOI: 10.1021/acsnano.2c08312] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanopore systems have emerged as a leading platform for the analysis of biomolecular complexes with single-molecule resolution. The conformation of biomolecules, such as RNA, is highly dependent on the electrolyte composition, but solid-state nanopore systems often require high salt concentration to operate, precluding analysis of macromolecular conformations under physiologically relevant conditions. Here, we report the implementation of a polymer-electrolyte solid-state nanopore system based on alkali metal halide salts dissolved in 50% w/v poly(ethylene) glycol (PEG) to augment the performance of our system. We show that polymer-electrolyte bath governs the translocation dynamics of the analyte which correlates with the physical properties of the salt used in the bath. This allowed us to identify CsBr as the optimal salt to complement PEG to generate the largest signal enhancement. Harnessing the effects of the polymer-electrolyte, we probed the conformations of the Chikungunya virus (CHIKV) RNA genome fragments under physiologically relevant conditions. Our system was able to fingerprint CHIKV RNA fragments ranging from ∼300 to ∼2000 nt length and subsequently distinguish conformations between the co-transcriptionally folded and the natively refolded ∼2000 nt CHIKV RNA. We envision that the polymer-electrolyte solid-state nanopore system will further enable structural and conformational analyses of individual biomolecules under physiologically relevant conditions.
Collapse
Affiliation(s)
- Chalmers Chau
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Dimitrios Soulias
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Martin Andrew Edwards
- Department
of Chemistry & Biochemistry, University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Andrew Tuplin
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Sheena E. Radford
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Eric Hewitt
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
15
|
Abrao‐Nemeir I, Bentin J, Meyer N, Janot J, Torrent J, Picaud F, Balme S. Investigation of α-Synuclein and Amyloid-β(42)-E22Δ Oligomers Using SiN Nanopore Functionalized with L-Dopa. Chem Asian J 2022; 17:e202200726. [PMID: 36038502 PMCID: PMC9826174 DOI: 10.1002/asia.202200726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Solid-state nanopores are an emerging technology used as a high-throughput, label-free analytical method for the characterization of protein aggregation in an aqueous solution. In this work, we used Levodopamine to coat a silicon nitride nanopore surface that was fabricated through a dielectric breakdown in order to reduce the unspecific adsorption. The coating of inner nanopore wall by investigation of the translocation of heparin. The functionalized nanopore was used to investigate the aggregation of amyloid-β and α-synuclein, two biomarkers of degenerative diseases. In the first application, we demonstrate that the α-synuclein WT is more prone to form dimers than the variant A53T. In the second one, we show for the Aβ(42)-E22Δ (Osaka mutant) that the addition of Aβ(42)-WT monomers increases the polymorphism of oligomers, while the incubation with Aβ(42)-WT fibrils generates larger aggregates.
Collapse
Affiliation(s)
- Imad Abrao‐Nemeir
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Jeremy Bentin
- Laboratory of Nanomedicin, Imagery and Therapeutics, EA4662University hospital center of BesançonUniversity of Bourgogne-Franche-Comté (UFR Sciences et Techniques)16 route de Gray25030BesançonFrance
| | - Nathan Meyer
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France,Neurological institute of MontpellierUniversity of Montpellier, INSERM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Jean‐Marc Janot
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Joan Torrent
- Neurological institute of MontpellierUniversity of Montpellier, INSERM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Fabien Picaud
- Laboratory of Nanomedicin, Imagery and Therapeutics, EA4662University hospital center of BesançonUniversity of Bourgogne-Franche-Comté (UFR Sciences et Techniques)16 route de Gray25030BesançonFrance
| | - Sebastien Balme
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| |
Collapse
|
16
|
Tanimoto IMF, Cressiot B, Greive SJ, Le Pioufle B, Bacri L, Pelta J. Focus on using nanopore technology for societal health, environmental, and energy challenges. NANO RESEARCH 2022; 15:9906-9920. [PMID: 35610982 PMCID: PMC9120803 DOI: 10.1007/s12274-022-4379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
With an increasing global population that is rapidly ageing, our society faces challenges that impact health, environment, and energy demand. With this ageing comes an accumulation of cellular changes that lead to the development of diseases and susceptibility to infections. This impacts not only the health system, but also the global economy. As the population increases, so does the demand for energy and the emission of pollutants, leading to a progressive degradation of our environment. This in turn impacts health through reduced access to arable land, clean water, and breathable air. New monitoring approaches to assist in environmental control and minimize the impact on health are urgently needed, leading to the development of new sensor technologies that are highly sensitive, rapid, and low-cost. Nanopore sensing is a new technology that helps to meet this purpose, with the potential to provide rapid point-of-care medical diagnosis, real-time on-site pollutant monitoring systems to manage environmental health, as well as integrated sensors to increase the efficiency and storage capacity of renewable energy sources. In this review we discuss how the powerful approach of nanopore based single-molecule, or particle, electrical promises to overcome existing and emerging societal challenges, providing new opportunities and tools for personalized medicine, localized environmental monitoring, and improved energy production and storage systems.
Collapse
Affiliation(s)
- Izadora Mayumi Fujinami Tanimoto
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
- LuMIn, CNRS, Institut d’Alembert, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | | | | | - Bruno Le Pioufle
- LuMIn, CNRS, Institut d’Alembert, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Laurent Bacri
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| | - Juan Pelta
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
- LAMBE, CNRS, CY Cergy Paris Université, 95000 Cergy, France
| |
Collapse
|
17
|
Meyer N, Janot JM, Torrent J, Balme S. Real-Time Fast Amyloid Seeding and Translocation of α-Synuclein with a Nanopipette. ACS CENTRAL SCIENCE 2022; 8:441-448. [PMID: 35505874 PMCID: PMC9052795 DOI: 10.1021/acscentsci.1c01404] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The detection to α-synuclein (αS) assemblies as a biomarker of synucleinopathies is an important challenge for further development of an early diagnosis tool. Here, we present proof of concept real-time fast amyloid seeding and translocation (RT-FAST) based on a nanopipette that combines in one unique system a reaction vessel to accelerate the seed amplification and nanopore sensor for single-molecule αS assembly detection. RT-FAST allows the detection of the presence αS seeds WT and A53T variant in a given sample in only 90 min by adding a low quantity (35 μL at 100 nM) of recombinant αS for amplification. It also shows cross-seeding aggregation by adding mixing seeds A53T with WT monomers. Finally, we establish the dependence between the capture rate of aggregates by the nanopore sensor and the initial seed concentration from 200 pM to 2 pM, which promises further development toward a quantitative analysis of the initial seed concentration.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut
Européen des Membranes, UMR5635 University of Montpellier ENCSM
CNRS, Place Eugène
Bataillon, 34095 Montpellier cedex 5, France
- INM,
University of Montpellier, INSERM, 34091 Montpellier, France
| | - Jean-Marc Janot
- Institut
Européen des Membranes, UMR5635 University of Montpellier ENCSM
CNRS, Place Eugène
Bataillon, 34095 Montpellier cedex 5, France
| | - Joan Torrent
- INM,
University of Montpellier, INSERM, 34091 Montpellier, France
| | - Sébastien Balme
- Institut
Européen des Membranes, UMR5635 University of Montpellier ENCSM
CNRS, Place Eugène
Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
18
|
Meyer N, Abrao-Nemeir I, Janot JM, Torrent J, Lepoitevin M, Balme S. Solid-state and polymer nanopores for protein sensing: A review. Adv Colloid Interface Sci 2021; 298:102561. [PMID: 34768135 DOI: 10.1016/j.cis.2021.102561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 01/15/2023]
Abstract
In two decades, the solid state and polymer nanopores became attractive method for the protein sensing with high specificity and sensitivity. They also allow the characterization of conformational changes, unfolding, assembly and aggregation as well the following of enzymatic reaction. This review aims to provide an overview of the protein sensing regarding the technique of detection: the resistive pulse and ionic diodes. For each strategy, we report the most significant achievement regarding the detection of peptides and protein as well as the conformational change, protein-protein assembly and aggregation process. We discuss the limitations and the recent strategies to improve the nanopore resolution and accuracy. A focus is done about concomitant problematic such as protein adsorption and nanopore lifetime.
Collapse
|