1
|
Raj P, Wu L, Arora S, Bhatt R, Zuo Y, Fang Z, Verdoold R, Koch T, Gu L, Barman I. Engineering vascularized skin-mimetic phantom for non-invasive Raman spectroscopy. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 404:135240. [PMID: 38524639 PMCID: PMC10956615 DOI: 10.1016/j.snb.2023.135240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Recent advances in Raman spectroscopy have shown great potential for non-invasive analyte sensing, but the lack of a standardized optical phantom for these measurements has hindered further progress. While many research groups have developed optical phantoms that mimic bulk optical absorption and scattering, these materials typically have strong Raman scattering, making it difficult to distinguish metabolite signals. As a result, solid tissue phantoms for spectroscopy have been limited to highly scattering tissues such as bones and calcifications, and metabolite sensing has been primarily performed using liquid tissue phantoms. To address this issue, we have developed a layered skin-mimetic phantom that can support metabolite sensing through Raman spectroscopy. Our approach incorporates millifluidic vasculature that mimics blood vessels to allow for diffusion akin to metabolite diffusion in the skin. Furthermore, our skin phantoms are mechanically mimetic, providing an ideal model for development of minimally invasive optical techniques. By providing a standardized platform for measuring metabolites, our approach has the potential to facilitate critical developments in spectroscopic techniques and improve our understanding of metabolite dynamics in vivo.
Collapse
Affiliation(s)
- Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Saransh Arora
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Raj Bhatt
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yi Zuo
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Tanja Koch
- ams OSRAM Innovation and Engineering, Germany
| | - Luo Gu
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Afraz A. Behavioral optogenetics in nonhuman primates; a psychological perspective. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100101. [PMID: 38020813 PMCID: PMC10663131 DOI: 10.1016/j.crneur.2023.100101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023] Open
Abstract
Optogenetics has been a promising and developing technology in systems neuroscience throughout the past decade. It has been difficult though to reliably establish the potential behavioral effects of optogenetic perturbation of the neural activity in nonhuman primates. This poses a challenge on the future of optogenetics in humans as the concepts and technology need to be developed in nonhuman primates first. Here, I briefly summarize the viable approaches taken to improve nonhuman primate behavioral optogenetics, then focus on one approach: improvements in the measurement of behavior. I bring examples from visual behavior and show how the choice of method of measurement might conceal large behavioral effects. I will then discuss the "cortical perturbation detection" task in detail as an example of a sensitive task that can record the behavioral effects of optogenetic cortical stimulation with high fidelity. Finally, encouraged by the rich scientific landscape ahead of behavioral optogenetics, I invite technology developers to improve the chronically implantable devices designed for simultaneous neural recording and optogenetic intervention in nonhuman primates.
Collapse
Affiliation(s)
- Arash Afraz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Luo J, Xue N, Chen J. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface. BIOSENSORS 2022; 12:bios12121167. [PMID: 36551135 PMCID: PMC9775442 DOI: 10.3390/bios12121167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, two new types of neural probes have been developed in recent years: optoprobes based on optogenetics and magnetrodes that record neural magnetic signals. In this review, we give a comprehensive overview of these three kinds of neural probes. We firstly discuss the development of microelectrodes and strategies for their flexibility, which is mainly represented by the selection of flexible substrates and new electrode materials. Subsequently, the concept of optogenetics is introduced, followed by the review of several novel structures of optoprobes, which are divided into multifunctional optoprobes integrated with microfluidic channels, artifact-free optoprobes, three-dimensional drivable optoprobes, and flexible optoprobes. At last, we introduce the fundamental perspectives of magnetoresistive (MR) sensors and then review the research progress of magnetrodes based on it.
Collapse
Affiliation(s)
- Jiahui Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xue
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Magisetty R, Park SM. New Era of Electroceuticals: Clinically Driven Smart Implantable Electronic Devices Moving towards Precision Therapy. MICROMACHINES 2022; 13:161. [PMID: 35208286 PMCID: PMC8876842 DOI: 10.3390/mi13020161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
In the name of electroceuticals, bioelectronic devices have transformed and become essential for dealing with all physiological responses. This significant advancement is attributable to its interdisciplinary nature from engineering and sciences and also the progress in micro and nanotechnologies. Undoubtedly, in the future, bioelectronics would lead in such a way that diagnosing and treating patients' diseases is more efficient. In this context, we have reviewed the current advancement of implantable medical electronics (electroceuticals) with their immense potential advantages. Specifically, the article discusses pacemakers, neural stimulation, artificial retinae, and vagus nerve stimulation, their micro/nanoscale features, and material aspects as value addition. Over the past years, most researchers have only focused on the electroceuticals metamorphically transforming from a concept to a device stage to positively impact the therapeutic outcomes. Herein, the article discusses the smart implants' development challenges and opportunities, electromagnetic field effects, and their potential consequences, which will be useful for developing a reliable and qualified smart electroceutical implant for targeted clinical use. Finally, this review article highlights the importance of wirelessly supplying the necessary power and wirelessly triggering functional electronic circuits with ultra-low power consumption and multi-functional advantages such as monitoring and treating the disease in real-time.
Collapse
Affiliation(s)
- RaviPrakash Magisetty
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Sung-Min Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|