1
|
Salmerón C, Tomás Bort E, Sriram K, Javadi-Paydar M, Smitham JE, Pham K, Grose RP, McCormick PJ, DiNardo A, Weitz J, Tiriac H, Lowy AM, Insel PA. Histamine H1 Receptor: A potential therapeutic target for pancreatic ductal adenocarcinoma. J Pharmacol Exp Ther 2025; 392:103573. [PMID: 40288207 DOI: 10.1016/j.jpet.2025.103573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) have a dismal 5-year survival (∼13%). Thus, new, effective, and ideally, less toxic therapies are desperately needed. Epidemiologic studies have found that patients with PDAC prescribed H1-antihistamines have improved survival. Expression of the histamine H1 receptor (HRH1), a G protein-coupled receptor which is blocked by approved H1-antihistamines, is increased by ∼20-fold in PDAC tumors compared with normal pancreas. Here, we used bioinformatic and molecular biological techniques to identify the cellular localization of HRH1 in the PDAC tumor microenvironment, assess functional responses to HRH1 activation, and define its potential biological roles in PDAC. We found that HRH1 is primarily expressed in cancer cells of PDAC tumors in humans and KPC mice (mice engineered to develop PDAC) and signals via G protein q/11 to increase intracellular Ca2+. HRH1 activation increases migration and invasion by PDAC cancer cells. Orally administered fexofenadine, an H1-antihistamine, was bioavailable in the tumors of KPC mice and yielded smaller pancreatic tumor tissue weights and lower expression of immunomodulatory (interleukin 6 and PD-1) and fibrotic (Col1A1) genes than in vehicle-control KPC mice. Thus, PDAC cancer cells express HRH1, which is functional in vitro and in vivo, suggesting that the repurposing of approved H1-antihistamines may be an efficacious and safe therapeutic approach for patients with PDAC. SIGNIFICANCE STATEMENT: Pancreatic ductal adenocarcinoma (PDAC) has a ∼13% 5-year survival rate, highlighting the need for new therapies. The HRH1 (histamine) receptor, associated with poorer survival, is upregulated in PDAC tumors. This study found that HRH1 is functional in PDAC cells, increasing intracellular Ca2+ via Gq/11 and promoting tumorigenic responses. KPC mice treated with an H1-antihistamine have reduced pancreas weight and lower proinflammatory and fibrotic markers in PDAC tumors. Thus, HRH1 may be a potential target for repurposing approved H1-antihistamines to treat PDAC.
Collapse
Affiliation(s)
- Cristina Salmerón
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Elena Tomás Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Mehrak Javadi-Paydar
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Jane E Smitham
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Kimberly Pham
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Anna DiNardo
- Department of Dermatology, University of California San Diego, La Jolla, California
| | - Jonathan Weitz
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Hervé Tiriac
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Andrew M Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California.
| |
Collapse
|
2
|
Su Q, Zhang J, Lin W, Zhang JF, Newton AC, Mehta S, Yang J, Zhang J. Sensitive fluorescent biosensor reveals differential subcellular regulation of PKC. Nat Chem Biol 2025; 21:501-511. [PMID: 39394268 DOI: 10.1038/s41589-024-01758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
The protein kinase C (PKC) family of serine and threonine kinases, consisting of three distinctly regulated subfamilies, has been established as critical for various cellular functions. However, how PKC enzymes are regulated at different subcellular locations, particularly at emerging signaling hubs, is unclear. Here we present a sensitive excitation ratiometric C kinase activity reporter (ExRai-CKAR2) that enables the detection of minute changes (equivalent to 0.2% of maximum stimulation) in subcellular PKC activity. Using ExRai-CKAR2 with an enhanced diacylglycerol (DAG) biosensor, we uncover that G-protein-coupled receptor stimulation triggers sustained PKC activity at the endoplasmic reticulum and lysosomes, differentially mediated by Ca2+-sensitive conventional PKC and DAG-sensitive novel PKC, respectively. The high sensitivity of ExRai-CKAR2, targeted to either the cytosol or partitioning defective complexes, further enabled us to detect previously inaccessible endogenous atypical PKC activity in three-dimensional organoids. Taken together, ExRai-CKAR2 is a powerful tool for interrogating PKC regulation in response to physiological stimuli.
Collapse
Affiliation(s)
- Qi Su
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin-Fan Zhang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Huang SH, Tulegenov D, Shvets G. Combining quantum cascade lasers and plasmonic metasurfaces to monitor de novo lipogenesis with vibrational contrast microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.30.646207. [PMID: 40236123 PMCID: PMC11996395 DOI: 10.1101/2025.03.30.646207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The combination of a tunable quantum cascade laser (QCL) and plasmonic mid-infrared (MIR) metasurface is a powerful tool enabling label-free high-content microscopy of hydrated cells using the vibrational contrast of their constituent biomolecules. While the QCL provides a high-brightness source whose frequency can be rapidly tuned to that of the relevant molecular vibration, the metasurface is used to overcome water absorption of MIR light. Here we employ the resulting Metasurface-enabled Inverted Reflected-light Infrared Absorption Microscopy (MIRIAM) tool for non-destructive monitoring of the vital process of de novo lipogenesis (DNL), by which fat tissue cells (adipocytes) synthesize fatty acids from glucose and store them inside lipid droplets. Using 13 C-labeled glucose as a metabolic probe, we produce spatially- and temporally-resolved images of 13 C incorporation into lipids and proteins, observed as red-shifted vibrational peaks in the MIR spectra. These findings demonstrate MIRIAM's capability for studying metabolic pathways with molecular specificity, offering a powerful platform for label-free imaging of cellular metabolism.
Collapse
|
4
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated integrator for highlighting kinase activity in living cells. Nat Commun 2024; 15:7804. [PMID: 39242543 PMCID: PMC11379911 DOI: 10.1038/s41467-024-51270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 08/02/2024] [Indexed: 09/09/2024] Open
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA activity distribution in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
6
|
Liu B, Hu S, Wang X. Applications of single-cell technologies in drug discovery for tumor treatment. iScience 2024; 27:110486. [PMID: 39171294 PMCID: PMC11338156 DOI: 10.1016/j.isci.2024.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Single-cell technologies have been known as advanced and powerful tools to study tumor biological systems at the single-cell resolution and are playing increasingly critical roles in multiple stages of drug discovery and development. Specifically, single-cell technologies can promote the discovery of drug targets, help high-throughput screening at single-cell level, and contribute to pharmacokinetic studies of anti-tumor drugs. Emerging single-cell analysis technologies have been developed to further integrating multidimensional single-cell molecular features, expanding the scale of single-cell data, profiling phenotypic impact of genes in single cell, and providing full-length coverage single-cell sequencing. In this review, we systematically summarized the applications of single-cell technologies in various sections of drug discovery for tumor treatment, including target identification, high-throughput drug screening, and pharmacokinetic evaluation and highlighted emerging single-cell technologies in providing in-depth understanding of tumor biology. Single-cell-technology-based drug discovery is expected to further optimize therapeutic strategies and improve clinical outcomes of tumor patients.
Collapse
Affiliation(s)
- Bingyu Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China
| |
Collapse
|
7
|
Su Q, Zhang J, Lin W, Zhang JF, Newton AC, Mehta S, Yang J, Zhang J. Sensitive Fluorescent Biosensor Reveals Differential Subcellular Regulation of PKC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587373. [PMID: 38586003 PMCID: PMC10996667 DOI: 10.1101/2024.03.29.587373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases, which consist of three distinctly regulated subfamilies, have long been established as critical for a variety of cellular functions. However, how PKC enzymes are regulated at different subcellular locations, particularly at emerging signaling hubs such as the ER, lysosome, and Par signaling complexes, is unclear. Here, we present a sensitive Excitation Ratiometric (ExRai) C Kinase Activity Reporter (ExRai-CKAR2) that enables the detection of minute changes in subcellular PKC activity. Using ExRai-CKAR2 in conjunction with an enhanced diacylglycerol (DAG) biosensor capable of detecting intracellular DAG dynamics, we uncover the differential regulation of PKC isoforms at distinct subcellular locations. We find that G-protein coupled receptor (GPCR) stimulation triggers sustained PKC activity at the ER and lysosomes, primarily mediated by Ca2+ sensitive conventional PKC (cPKC) and novel PKC (nPKC), respectively, with nPKC showing high basal activity due to elevated basal DAG levels on lysosome membranes. The high sensitivity of ExRai-CKAR2, targeted to either the cytosol or Par-complexes, further enabled us to detect previously inaccessible endogenous atypical PKC (aPKC) activity in 3D organoids. Taken together, ExRai-CKAR2 is a powerful tool for interrogating PKC regulation in response to physiological stimuli.
Collapse
Affiliation(s)
- Qi Su
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Wei Lin
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jin-Fan Zhang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Alexandra C Newton
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated Integrator for Highlighting Kinase Activity in Living Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585554. [PMID: 38562887 PMCID: PMC10983958 DOI: 10.1101/2024.03.18.585554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA signaling heterogeneity in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Posner C, Mehta S, Zhang J. Fluorescent biosensor imaging meets deterministic mathematical modelling: quantitative investigation of signalling compartmentalization. J Physiol 2023; 601:4227-4241. [PMID: 37747358 PMCID: PMC10764149 DOI: 10.1113/jp282696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Cells execute specific responses to diverse environmental cues by encoding information in distinctly compartmentalized biochemical signalling reactions. Genetically encoded fluorescent biosensors enable the spatial and temporal monitoring of signalling events in live cells. Temporal and spatiotemporal computational models can be used to interpret biosensor experiments in complex biochemical networks and to explore hypotheses that are difficult to test experimentally. In this review, we first provide brief discussions of the experimental toolkit of fluorescent biosensors as well as computational basics with a focus on temporal and spatiotemporal deterministic models. We then describe how we used this combined approach to identify and investigate a protein kinase A (PKA) - cAMP - Ca2+ oscillatory circuit in MIN6 β cells, a mouse pancreatic β cell system. We describe the application of this combined approach to interrogate how this oscillatory circuit is differentially regulated in a nano-compartment formed at the plasma membrane by the scaffolding protein A kinase anchoring protein 79/150. We leveraged both temporal and spatiotemporal deterministic models to identify the key regulators of this oscillatory circuit, which we confirmed with further experiments. The powerful approach of combining live-cell biosensor imaging with quantitative modelling, as discussed here, should find widespread use in the investigation of spatiotemporal regulation of cell signalling.
Collapse
Affiliation(s)
- Clara Posner
- Department of Pharmacology, University of California, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| |
Collapse
|